• Annals of medicine · Mar 2018

    Review

    Next generation sequencing applications for cardiovascular disease.

    • Samira Kalayinia, Hamidreza Goodarzynejad, Majid Maleki, and Nejat Mahdieh.
    • a Cardiogenetic Research Laboratory , Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences , Tehran , Iran.
    • Ann. Med. 2018 Mar 1; 50 (2): 9110991-109.

    AbstractThe Human Genome Project (HGP), as the primary sequencing of the human genome, lasted more than one decade to be completed using the traditional Sanger's method. At present, next-generation sequencing (NGS) technology could provide the genome sequence data in hours. NGS has also decreased the expense of sequencing; therefore, nowadays it is possible to carry out both whole-genome (WGS) and whole-exome sequencing (WES) for the variations detection in patients with rare genetic diseases as well as complex disorders such as common cardiovascular diseases (CVDs). Finding new variants may contribute to establishing a risk profile for the pathology process of diseases. Here, recent applications of NGS in cardiovascular medicine are discussed; both Mendelian disorders of the cardiovascular system and complex genetic CVDs including inherited cardiomyopathy, channelopathies, stroke, coronary artery disease (CAD) and are considered. We also state some future use of NGS in clinical practice for increasing our information about the CVDs genetics and the limitations of this new technology. Key messages Traditional Sanger's method was the mainstay for Human Genome Project (HGP); Sanger sequencing has high fidelity but is slow and costly as compared to next generation methods. Within cardiovascular medicine, NGS has been shown to be successful in identifying novel causative mutations and in the diagnosis of Mendelian diseases which are caused by a single variant in a single gene. NGS has provided the opportunity to perform parallel analysis of a great number of genes in an unbiased approach (i.e. without knowing the underlying biological mechanism) which probably contribute to advance our knowledge regarding the pathology of complex diseases such as CVD.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.