• World Neurosurg · Mar 2023

    Investigation of the use of hollow elastic biomodels produced by additive manufacturing for clip choice and surgical simulation in microsurgery for intracranial aneurysms.

    • André Giacomelli Leal, Enzo Oku Martinazzo, Matheus Kahakura Franco Pedro, de SouzaMauren AbreuMAPost-Graduation Program in Health Technology, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil., and Percy Nohama.
    • Neurovascular Department, Neurological Institute of Curitiba, Curitiba, Parana, Brazil. Electronic address: andregiacomelli@hospitalinc.com.br.
    • World Neurosurg. 2023 Mar 1; 171: e291e300e291-e300.

    BackgroundIntracranial aneurysms (IAs) are dilatations of the cerebral arteries, whose treatment is commonly based on the implant of a metallic clip on the aneurysm neck. Despite the dissection and understanding of the surgical anatomy of the IA when often only parts of it are visible, the choice of the ideal clip to be used is one of the surgical difficulties. Although current imaging tests guarantee IA visualization, currently there is no planning method that allows for a real three-dimensional (3D) visualization for optimal choice of clip prior to surgery. The aim of this study is to evaluate whether IA biomodels generated by additive manufacturing methods are useful for surgical clip selection in microsurgeries for IA.MethodsThree-dimensional (3D) IA biomodels of 10 patients with IA were evaluated using computerized tomography, surgical microscope, and 3D printer. The research was divided into 4 phases as follows: development of the 3D biomodels, evaluation of the biomodel dimensional characteristics, surgical planning evaluation with the biomodel and its clipping effectiveness, and evaluation of the actual surgical simulation process within the models.ResultsTen 3D biomodels were obtained, made of a malleable and hollow part, formed by the IA and related arteries, and another rigid part, mimicking the skull and other arteries of the skull base. Based on these 3D models, 10 clips were chosen during the surgical planning, and all exactly matched the clip characteristics used during the actual surgeries. The surgical simulation with the biomodels performed by 2 neurosurgeons still in training obtained 100% accuracy in the identification of the clips that were eventually used during the actual surgeries.Conclusions3D biomodels generated by additive manufacturing methods were effective for surgical clip selection in microsurgeries for IA, reducing surgical time, increasing cerebral angioarchitecture understanding, and providing more safety in this type of surgery.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.