-
- Rita Varudo, Filipe A Gonzalez, João Leote, Cristina Martins, Jacobo Bacariza, Antero Fernandes, and Frederic Michard.
- Intensive Care Department, Hospital Garcia de Orta, Almada, Portugal.
- Crit Care. 2022 Dec 14; 26 (1): 386386.
BackgroundMachine learning algorithms have recently been developed to enable the automatic and real-time echocardiographic assessment of left ventricular ejection fraction (LVEF) and have not been evaluated in critically ill patients.MethodsReal-time LVEF was prospectively measured in 95 ICU patients with a machine learning algorithm installed on a cart-based ultrasound system. Real-time measurements taken by novices (LVEFNov) and by experts (LVEFExp) were compared with LVEF reference measurements (LVEFRef) taken manually by echo experts.ResultsLVEFRef ranged from 26 to 80% (mean 54 ± 12%), and the reproducibility of measurements was 9 ± 6%. Thirty patients (32%) had a LVEFRef < 50% (left ventricular systolic dysfunction). Real-time LVEFExp and LVEFNov measurements ranged from 31 to 68% (mean 54 ± 10%) and from 28 to 70% (mean 54 ± 9%), respectively. The reproducibility of measurements was comparable for LVEFExp (5 ± 4%) and for LVEFNov (6 ± 5%) and significantly better than for reference measurements (p < 0.001). We observed a strong relationship between LVEFRef and both real-time LVEFExp (r = 0.86, p < 0.001) and LVEFNov (r = 0.81, p < 0.001). The average difference (bias) between real time and reference measurements was 0 ± 6% for LVEFExp and 0 ± 7% for LVEFNov. The sensitivity to detect systolic dysfunction was 70% for real-time LVEFExp and 73% for LVEFNov. The specificity to detect systolic dysfunction was 98% both for LVEFExp and LVEFNov.ConclusionMachine learning-enabled real-time measurements of LVEF were strongly correlated with manual measurements obtained by experts. The accuracy of real-time LVEF measurements was excellent, and the precision was fair. The reproducibility of LVEF measurements was better with the machine learning system. The specificity to detect left ventricular dysfunction was excellent both for experts and for novices, whereas the sensitivity could be improved.Trial RegistrationNCT05336448. Retrospectively registered on April 19, 2022.© 2022. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.