-
Comparative Study
Comparison of amyloid burden in individuals with Down syndrome versus autosomal dominant Alzheimer's disease: a cross-sectional study.
- Anna H Boerwinkle, Brian A Gordon, Julie Wisch, Shaney Flores, Rachel L Henson, Omar H Butt, Nicole McKay, Charles D Chen, BenzingerTammie L STLSHope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA; Department of Radiology, Washington University in St Louis, St Louis, MO, USA., Anne M Fagan, Benjamin L Handen, Bradley T Christian, Elizabeth Head, Mark Mapstone, Michael S Rafii, Sid O'Bryant, Florence Lai, H Diana Rosas, Joseph H Lee, Wayne Silverman, Adam M Brickman, Jasmeer P Chhatwal, Carlos Cruchaga, Richard J Perrin, Chengjie Xiong, Jason Hassenstab, Eric McDade, Randall J Bateman, Beau M Ances, Alzheimer's Biomarker Consortium-Down Syndrome, and Dominantly Inherited Alzheimer Network.
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
- Lancet Neurol. 2023 Jan 1; 22 (1): 556555-65.
BackgroundImportant insights into the early pathogenesis of Alzheimer's disease can be provided by studies of autosomal dominant Alzheimer's disease and Down syndrome. However, it is unclear whether the timing and spatial distribution of amyloid accumulation differs between people with autosomal dominant Alzheimer's disease and those with Down syndrome. We aimed to directly compare amyloid changes between these two groups of people.MethodsIn this cross-sectional study, we included participants (aged ≥25 years) with Down syndrome and sibling controls who had MRI and amyloid PET scans in the first data release (January, 2020) of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. We also included carriers of autosomal dominant Alzheimer's disease genetic mutations and non-carrier familial controls who were within a similar age range to ABC-DS participants (25-73 years) and had MRI and amyloid PET scans at the time of a data freeze (December, 2020) of the Dominantly Inherited Alzheimer Network (DIAN) study. Controls from the two studies were combined into a single group. All DIAN study participants had genetic testing to determine PSEN1, PSEN2, or APP mutation status. APOE genotype was determined from blood samples. CSF samples were collected in a subset of ABC-DS and DIAN participants and the ratio of amyloid β42 (Aβ42) to Aβ40 (Aβ42/40) was measured to evaluate its Spearman's correlation with amyloid PET. Global PET amyloid burden was compared with regards to cognitive status, APOE ɛ4 status, sex, age, and estimated years to symptom onset. We further analysed amyloid PET deposition by autosomal dominant mutation type. We also assessed regional patterns of amyloid accumulation by estimated number of years to symptom onset. Within a subset of participants the relationship between amyloid PET and CSF Aβ42/40 was evaluated.Findings192 individuals with Down syndrome and 33 sibling controls from the ABC-DS study and 265 carriers of autosomal dominant Alzheimer's disease mutations and 169 non-carrier familial controls from the DIAN study were included in our analyses. PET amyloid centiloid and CSF Aβ42/40 were negatively correlated in carriers of autosomal dominant Alzheimer's disease mutations (n=216; r=-0·565; p<0·0001) and in people with Down syndrome (n=32; r=-0·801; p<0·0001). There was no difference in global PET amyloid burden between asymptomatic people with Down syndrome (mean 18·80 centiloids [SD 28·33]) versus asymptomatic mutation carriers (24·61 centiloids [30·27]; p=0·11) and between symptomatic people with Down syndrome (77·25 centiloids [41·76]) versus symptomatic mutation carriers (69·15 centiloids [51·10]; p=0·34). APOE ɛ4 status and sex had no effect on global amyloid PET deposition. Amyloid deposition was elevated significantly earlier in mutation carriers than in participants with Down syndrome (estimated years to symptom onset -23·0 vs -17·5; p=0·0002). PSEN1 mutations primarily drove this difference. Early amyloid accumulation occurred in striatal and cortical regions for both mutation carriers (n=265) and people with Down syndrome (n=128). Although mutation carriers had widespread amyloid accumulation in all cortical regions, the medial occipital regions were spared in people with Down syndrome.InterpretationDespite minor differences, amyloid PET changes were similar between people with autosomal dominant Alzheimer's disease versus Down syndrome and strongly supported early amyloid dysregulation in individuals with Down syndrome. Individuals with Down syndrome aged at least 35 years might benefit from early intervention and warrant future inclusion in clinical trials, particularly given the relatively high incidence of Down syndrome.FundingThe National Institute on Aging, Riney and Brennan Funds, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the German Center for Neurodegenerative Diseases, and the Japan Agency for Medical Research and Development.Copyright © 2023 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.