-
- Max O Meneveau, Rick D Vavolizza, Anwaruddin Mohammad, Pankaj Kumar, Joseph T Manderfield, Colleen Callahan, Kevin T Lynch, Tarek Abbas, Craig L Slingluff, and Stefan Bekiranov.
- Department of Surgery, University of Virginia, Charlottesville, VA.
- Ann. Surg. 2023 Sep 1; 278 (3): e589e597e589-e597.
ObjectiveDevelop a predictive model to identify patients with 1 pathologic lymph node (pLN) versus >1 pLN using machine learning applied to gene expression profiles and clinical data as input variables.BackgroundStandard management for clinically detected melanoma lymph node metastases is complete therapeutic LN dissection (TLND). However, >40% of patients with a clinically detected melanoma lymph node will only have 1 pLN on final review. Recent data suggest that targeted excision of just the single enlarged LN may provide excellent regional control, with less morbidity than TLND. The selection of patients for less morbid surgery requires accurate identification of those with only 1 pLN.MethodsThe Cancer Genome Atlas database was used to identify patients who underwent TLND for melanoma. Pathology reports in The Cancer Genome Atlas were reviewed to identify the number of pLNs. Patients were included for machine learning analyses if RNA sequencing data were available from a pLN. After feature selection, the top 20 gene expression and clinical input features were used to train a ridge logistic regression model to predict patients with 1 pLN versus >1 pLN using 10-fold cross-validation on 80% of samples. The model was then tested on the remaining holdout samples.ResultsA total of 153 patients met inclusion criteria: 64 with one pLN (42%) and 89 with >1 pLNs (58%). Feature selection identified 1 clinical (extranodal extension) and 19 gene expression variables used to predict patients with 1 pLN versus >1 pLN. The ridge logistic regression model identified patient groups with an accuracy of 90% and an area under the receiver operating characteristic curve of 0.97.ConclusionsGene expression profiles together with clinical variables can distinguish melanoma metastasis patients with 1 pLN versus >1 pLN. Future models trained using positron emission tomography/computed tomography imaging, gene expression, and relevant clinical variables may further improve accuracy and may predict patients who can be managed with a targeted LN excision rather than a complete TLND.Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.