• Medicina · Nov 2022

    A Machine Learning-Based Risk Prediction Model for Post-Traumatic Stress Disorder during the COVID-19 Pandemic.

    • Yang Liu, Ya-Nan Xie, Wen-Gang Li, Xin He, Hong-Gu He, Long-Biao Chen, and Qu Shen.
    • Department of Nursing, School of Medicine, Xiamen University, Xiamen 361102, China.
    • Medicina (Kaunas). 2022 Nov 22; 58 (12).

    AbstractBackground and Objectives: The COVID-19 pandemic has caused global public panic, leading to severe mental illnesses, such as post-traumatic stress disorder (PTSD). This study aimed to establish a risk prediction model of PTSD based on a machine learning algorithm to provide a basis for the extensive assessment and prediction of the PTSD risk status in adults during a pandemic. Materials and Methods: Model indexes were screened based on the cognitive-phenomenological-transactional (CPT) theoretical model. During the study period (1 March to 15 March 2020), 2067 Chinese residents were recruited using Research Electronic Data Capture (REDCap). Socio-demographic characteristics, PTSD, depression, anxiety, social support, general self-efficacy, coping style, and other indicators were collected in order to establish a neural network model to predict and evaluate the risk of PTSD. Results: The research findings showed that 368 of the 2067 participants (17.8%) developed PTSD. The model correctly predicted 90.0% (262) of the outcomes. Receiver operating characteristic (ROC) curves and their associated area under the ROC curve (AUC) values suggested that the prediction model possessed an accurate discrimination ability. In addition, depression, anxiety, age, coping style, whether the participants had seen a doctor during the COVID-19 quarantine period, and self-efficacy were important indexes. Conclusions: The high prediction accuracy of the model, constructed based on a machine learning algorithm, indicates its applicability in screening the public mental health status during the COVID-19 pandemic quickly and effectively. This model could also predict and identify high-risk groups early to prevent the worsening of PTSD symptoms.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.