• Presse Med · Jun 2023

    Review

    Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness.

    • Nicholas D Schiff.
    • Jerold B. Katz Professor of Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, United States. Electronic address: nds2001@med.cornell.edu.
    • Presse Med. 2023 Jun 1; 52 (2): 104161104161.

    AbstractThe 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.Copyright © 2022. Published by Elsevier Masson SAS.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.