-
Observational Study
Predicting Failure of Noninvasive Respiratory Support Using Deep Recurrent Learning.
- Patrick T Essay, Jarrod M Mosier, Amin Nayebi, Julia M Fisher, and Vignesh Subbian.
- Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, Arizona.
- Respir Care. 2023 Apr 1; 68 (4): 488496488-496.
BackgroundNoninvasive respiratory support (NRS) is increasingly used to support patients with acute respiratory failure. However, noninvasive support failure may worsen outcomes compared to primary support with invasive mechanical ventilation. Therefore, there is a need to identify patients where NRS is failing so that treatment can be reassessed and adjusted. The objective of this study was to develop and evaluate 3 recurrent neural network (RNN) models to predict NRS failure.MethodsThis was a cross-sectional observational study to evaluate the ability of deep RNN models (long short-term memory [LSTM], gated recurrent unit [GRU]), and GRU with trainable decay) to predict failure of NRS. Data were extracted from electronic health records from all adult (≥ 18 y) patient records requiring any type of oxygen therapy or mechanical ventilation between November 1, 2013-September 30, 2020, across 46 ICUs in the Southwest United States in a single health care network. Input variables for each model included serum chloride, creatinine, albumin, breathing frequency, heart rate, SpO2 , FIO2 , arterial oxygen saturation (SaO2 ), and 2 measurements each (point-of-care and laboratory measurement) of PaO2 and partial pressure of arterial oxygen from an arterial blood gas.ResultsTime series data from electronic health records were available for 22,075 subjects. The highest accuracy and area under the receiver operating characteristic curve were for the LSTM model (94.04% and 0.9636, respectively). Accurate predictions were made 12 h after ICU admission, and performance remained high well in advance of NRS failure.ConclusionsRNN models using routinely collected time series data can accurately predict NRS failure well before intubation. This lead time may provide an opportunity to intervene to optimize patient outcomes.Copyright © 2023 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.