-
- Seung Jae Shin, Hee Sun Bae, Hyung Jun Moon, Gi Woon Kim, Young Soon Cho, Dong Wook Lee, Dong Kil Jeong, Hyun Joon Kim, and Hyun Jung Lee.
- Department of Industrial and System Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea.
- Am J Emerg Med. 2023 Jan 1; 63: 293729-37.
AimThis study aims to develop a cardiac arrest prediction model using deep learning (CAPD) algorithm and to validate the developed algorithm by evaluating the change in out-of-hospital cardiac arrest patient prognosis according to the increase in scene time interval (STI).MethodsWe conducted a retrospective cohort study using smart advanced life support trial data collected by the National Emergency Center from January 2016 to December 2019. The smart advanced life support data were randomly partitioned into derivation and validation datasets. The performance of the CAPD model using the patient's age, sex, event witness, bystander cardiopulmonary resuscitation (CPR), administration of epinephrine, initial shockable rhythm, prehospital defibrillation, provision of advanced life support, response time interval, and STI as prediction variables for prediction of a patient's prognosis was compared with conventional machine learning methods. After fixing other values of the input data, the changes in prognosis of the patient with respect to the increase in STI was observed.ResultsA total of 16,992 patients were included in this study. The area under the receiver operating characteristic curve values for predicting prehospital return of spontaneous circulation (ROSC) and favorable neurological outcomes were 0.828 (95% confidence interval 0.826-0.830) and 0.907 (0.914-0.910), respectively. Our algorithm significantly outperformed other artificial intelligence algorithms and conventional methods. The neurological recovery rate was predicted to decrease to 1/3 of that at the beginning of cardiopulmonary resuscitation when the STI was 28 min, and the prehospital ROSC was predicted to decrease to 1/2 of its initial level when the STI was 30 min.ConclusionThe CAPD exhibits potential and effectiveness in identifying patients with ROSC and favorable neurological outcomes for prehospital resuscitation.Copyright © 2022. Published by Elsevier Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.