• Lancet · Jan 2023

    Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts.

    • Iain S Forrest, Ben O Petrazzini, Áine Duffy, Joshua K Park, Carla Marquez-Luna, Daniel M Jordan, Ghislain Rocheleau, Judy H Cho, Robert S Rosenson, Jagat Narula, Girish N Nadkarni, and Ron Do.
    • The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
    • Lancet. 2023 Jan 21; 401 (10372): 215225215-225.

    BackgroundBinary diagnosis of coronary artery disease does not preserve the complexity of disease or quantify its severity or its associated risk with death; hence, a quantitative marker of coronary artery disease is warranted. We evaluated a quantitative marker of coronary artery disease derived from probabilities of a machine learning model.MethodsIn this cohort study, we developed and validated a coronary artery disease-predictive machine learning model using 95 935 electronic health records and assessed its probabilities as in-silico scores for coronary artery disease (ISCAD; range 0 [lowest probability] to 1 [highest probability]) in participants in two longitudinal biobank cohorts. We measured the association of ISCAD with clinical outcomes-namely, coronary artery stenosis, obstructive coronary artery disease, multivessel coronary artery disease, all-cause death, and coronary artery disease sequelae.FindingsAmong 95 935 participants, 35 749 were from the BioMe Biobank (median age 61 years [IQR 18]; 14 599 [41%] were male and 21 150 [59%] were female; 5130 [14%] were with diagnosed coronary artery disease) and 60 186 were from the UK Biobank (median age 62 [15] years; 25 031 [42%] male and 35 155 [58%] female; 8128 [14%] with diagnosed coronary artery disease). The model predicted coronary artery disease with an area under the receiver operating characteristic curve of 0·95 (95% CI 0·94-0·95; sensitivity of 0·94 [0·94-0·95] and specificity of 0·82 [0·81-0·83]) and 0·93 (0·92-0·93; sensitivity of 0·90 [0·89-0·90] and specificity of 0·88 [0·87-0·88]) in the BioMe validation and holdout sets, respectively, and 0·91 (0·91-0·91; sensitivity of 0·84 [0·83-0·84] and specificity of 0·83 [0·82-0·83]) in the UK Biobank external test set. ISCAD captured coronary artery disease risk from known risk factors, pooled cohort equations, and polygenic risk scores. Coronary artery stenosis increased quantitatively with ascending ISCAD quartiles (increase per quartile of 12 percentage points), including risk of obstructive coronary artery disease, multivessel coronary artery disease, and stenosis of major coronary arteries. Hazard ratios (HRs) and prevalence of all-cause death increased stepwise over ISCAD deciles (decile 1: HR 1·0 [95% CI 1·0-1·0], 0·2% prevalence; decile 6: 11 [3·9-31], 3·1% prevalence; and decile 10: 56 [20-158], 11% prevalence). A similar trend was observed for recurrent myocardial infarction. 12 (46%) undiagnosed individuals with high ISCAD (≥0·9) had clinical evidence of coronary artery disease according to the 2014 American College of Cardiology/American Heart Association Task Force guidelines.InterpretationElectronic health record-based machine learning was used to generate an in-silico marker for coronary artery disease that can non-invasively quantify atherosclerosis and risk of death on a continuous spectrum, and identify underdiagnosed individuals.FundingNational Institutes of Health.Copyright © 2023 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.