• Anesthesiology · Mar 2023

    Mechanical power ratio and respiratory treatment escalation in COVID-19 pneumonia: a secondary analysis of a prospectively enrolled cohort.

    • Simone Gattarello, Silvia Coppola, Elena Chiodaroli, Tommaso Pozzi, Luigi Camporota, Leif Saager, Davide Chiumello, and Luciano Gattinoni.
    • Anesthesia and Intensive Care Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy; and Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany.
    • Anesthesiology. 2023 Mar 1; 138 (3): 289298289-298.

    BackgroundUnder the hypothesis that mechanical power ratio could identify the spontaneously breathing patients with a higher risk of respiratory failure, this study assessed lung mechanics in nonintubated patients with COVID-19 pneumonia, aiming to (1) describe their characteristics; (2) compare lung mechanics between patients who received respiratory treatment escalation and those who did not; and (3) identify variables associated with the need for respiratory treatment escalation.MethodsSecondary analysis of prospectively enrolled cohort involving 111 consecutive spontaneously breathing adults receiving continuous positive airway pressure, enrolled from September 2020 to December 2021. Lung mechanics and other previously reported predictive indices were calculated, as well as a novel variable: the mechanical power ratio (the ratio between the actual and the expected baseline mechanical power). Patients were grouped according to the outcome: (1) no-treatment escalation (patient supported in continuous positive airway pressure until improvement) and (2) treatment escalation (escalation of the respiratory support to noninvasive or invasive mechanical ventilation), and the association between lung mechanics/predictive scores and outcome was assessed.ResultsAt day 1, patients undergoing treatment escalation had spontaneous tidal volume similar to those of patients who did not (7.1 ± 1.9 vs. 7.1 ± 1.4 ml/kgIBW; P = 0.990). In contrast, they showed higher respiratory rate (20 ± 5 vs. 18 ± 5 breaths/min; P = 0.028), minute ventilation (9.2 ± 3.0 vs. 7.9 ± 2.4 l/min; P = 0.011), tidal pleural pressure (8.1 ± 3.7 vs. 6.0 ± 3.1 cm H2O; P = 0.003), mechanical power ratio (2.4 ± 1.4 vs. 1.7 ± 1.5; P = 0.042), and lower partial pressure of alveolar oxygen/fractional inspired oxygen tension (174 ± 64 vs. 220 ± 95; P = 0.007). The mechanical power (area under the curve, 0.738; 95% CI, 0.636 to 0.839] P < 0.001), the mechanical power ratio (area under the curve, 0.734; 95% CI, 0.625 to 0.844; P < 0.001), and the pressure-rate index (area under the curve, 0.733; 95% CI, 0.631 to 0.835; P < 0.001) showed the highest areas under the curve.ConclusionsIn this COVID-19 cohort, tidal volume was similar in patients undergoing treatment escalation and in patients who did not; mechanical power, its ratio, and pressure-rate index were the variables presenting the highest association with the clinical outcome.Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.