• Crit Care · Dec 2022

    Gene signature for the prediction of the trajectories of sepsis-induced acute kidney injury.

    • Zhongheng Zhang, Lin Chen, Huiheng Liu, Yujing Sun, Pengfei Shui, Jian Gao, Decong Wang, Huilin Jiang, Yanling Li, Kun Chen, Yucai Hong, and CMAISE Consortium.
    • Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China. zh_zhang1984@zju.edu.cn.
    • Crit Care. 2022 Dec 21; 26 (1): 398398.

    BackgroundAcute kidney injury (AKI) is a common complication in sepsis. However, the trajectories of sepsis-induced AKI and their transcriptional profiles are not well characterized.MethodsSepsis patients admitted to centres participating in Chinese Multi-omics Advances In Sepsis (CMAISE) from November 2020 to December 2021 were enrolled, and gene expression in peripheral blood mononuclear cells was measured on Day 1. The renal function trajectory was measured by the renal component of the SOFA score (SOFArenal) on Days 1 and 3. Transcriptional profiles on Day 1 were compared between these renal function trajectories, and a support vector machine (SVM) was developed to distinguish transient from persistent AKI.ResultsA total of 172 sepsis patients were enrolled during the study period. The renal function trajectory was classified into four types: non-AKI (SOFArenal = 0 on Days 1 and 3, n = 50), persistent AKI (SOFArenal > 0 on Days 1 and 3, n = 62), transient AKI (SOFArenal > 0 on Day 1 and SOFArenal = 0 on Day 3, n = 50) and worsening AKI (SOFArenal = 0 on Days 1 and SOFArenal > 0 on Day 3, n = 10). The persistent AKI group showed severe organ dysfunction and prolonged requirements for organ support. The worsening AKI group showed the least organ dysfunction on day 1 but had higher serum lactate and prolonged use of vasopressors than the non-AKI and transient AKI groups. There were 2091 upregulated and 1,902 downregulated genes (adjusted p < 0.05) between the persistent and transient AKI groups, with enrichment in the plasma membrane complex, receptor complex, and T-cell receptor complex. A 43-gene SVM model was developed using the genetic algorithm, which showed significantly greater performance predicting persistent AKI than the model based on clinical variables in a holdout subset (AUC: 0.948 [0.912, 0.984] vs. 0.739 [0.648, 0.830]; p < 0.01 for Delong's test).ConclusionsOur study identified four subtypes of sepsis-induced AKI based on kidney injury trajectories. The landscape of host response aberrations across these subtypes was characterized. An SVM model based on a gene signature was developed to predict renal function trajectories, and showed better performance than the clinical variable-based model. Future studies are warranted to validate the gene model in distinguishing persistent from transient AKI.© 2022. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.