• Cochrane Db Syst Rev · Jan 2023

    Review

    Protein restriction for diabetic kidney disease.

    • Shimin Jiang, Jinying Fang, and Wenge Li.
    • Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
    • Cochrane Db Syst Rev. 2023 Jan 3; 1 (1): CD014906CD014906.

    BackgroundDiabetic kidney disease (DKD) continues to be the leading cause of kidney failure across the world. For decades dietary protein restriction has been proposed for patients with DKD with the aim to retard the progression of chronic kidney disease (CKD) towards kidney failure. However, the relative benefits and harms of dietary protein restriction for slowing the progression of DKD have not been addressed.ObjectivesTo determine the efficacy and safety of low protein diets (LPD) (0.6 to 0.8 g/kg/day) in preventing the progression of CKD towards kidney failure and in reducing the incidence of kidney failure and death (any cause) in adult patients with DKD. Moreover, the effect of LPD on adverse events (e.g. malnutrition, hyperglycaemic events, or health-related quality of life (HRQoL)) and compliance were also evaluated.Search MethodsWe searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov.Selection CriteriaWe included randomised controlled trials (RCTs) or quasi-RCTs in which adults with DKD not on dialysis were randomised to receive either a LPD (0.6 to 0.8 g/kg/day) or a usual or unrestricted protein diet (UPD) (≥ 1.0 g/kg/day) for at least 12 months.Data Collection And AnalysisTwo authors independently selected studies and extracted data. Summary estimates of effect were obtained using a random-effects model. Results were summarised as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised MD (SMD) with 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.Main ResultsWe identified eight studies involving 486 participants with DKD. The prescribed protein intake in the intervention groups ranged from 0.6 to 0.8 g/kg/day. The prescribed protein intake in the control groups was ≥ 1.0 g/kg/day, or a calculated protein intake ≥ 1.0 g/kg/day if data on prescribed protein intake were not provided. The mean duration of the interventions was two years (ranging from one to five years). Risks of bias in most of the included studies were high or unclear, most notably for allocation concealment, performance and detection bias. All studies were considered to be at high risk for performance bias due to the nature of the interventions. Most studies were not designed to examine death or kidney failure. In low certainty evidence, a LPD may have little or no effect on death (5 studies, 358 participants: RR 0.38, 95% CI 0.10 to 1.44; I² = 0%), and the number of participants who reached kidney failure (4 studies, 287 participants: RR 1.16, 95% CI 0.38 to 3.59; I² = 0%). Compared to a usual or unrestricted protein intake, it remains uncertain whether a LPD slows the decline of glomerular filtration rate over time (7 studies, 367 participants: MD -0.73 mL/min/1.73 m²/year, 95% CI -2.3 to 0.83; I² = 53%; very low certainty evidence). It is also uncertain whether the restriction of dietary protein intake impacts on the annual decline in creatinine clearance (3 studies, 203 participants: MD -2.39 mL/min/year, 95% CI -5.87 to 1.08; I² = 53%). There was only one study reporting 24-hour urinary protein excretion. In very low certainty evidence, a LPD had uncertain effects on the annual change in proteinuria (1 study, 80 participants: MD 0.90 g/24 hours, 95% CI 0.49 to 1.31). There was no evidence of malnutrition in seven studies, while one study noted this condition in the LPD group. Participant compliance with a LPD was unsatisfactory in nearly half of the studies. One study reported LPD had no effect on HRQoL. No studies reported hyperglycaemic events.Authors' ConclusionsDietary protein restriction has uncertain effects on changes in kidney function over time. However, it may make little difference to the risk of death and kidney failure. Questions remain about protein intake levels and compliance with protein-restricted diets. There are limited data on HRQoL and adverse effects such as nutritional measures and hyperglycaemic events. Large-scale pragmatic RCTs with sufficient follow-up are required for different stages of CKD.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…