• J. Cell. Mol. Med. · May 2013

    Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model.

    • Xiaojiong Lu, Todd Costantini, Nicole E Lopez, Paul L Wolf, Ann-Marie Hageny, James Putnam, Brian Eliceiri, and Raul Coimbra.
    • Division of Trauma, Surgical Critical Care and Burns, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA 92103, USA.
    • J. Cell. Mol. Med. 2013 May 1;17(5):664-71.

    AbstractMitochondria play a central role in the integration and execution of a wide variety of apoptotic signals. In the present study, we examined the deleterious effects of burn injury on heart tissue. We explored the effects of vagal nerve stimulation (VNS) on cardiac injury in a murine burn injury model, with a focus on the protective effect of VNS on mitochondrial dysfunction in heart tissue. Mice were subjected to a 30% total body surface area, full-thickness steam burn followed by right cervical VNS for 10 min. and compared to burn alone. A separate group of mice were treated with the M3-muscarinic acetylcholine receptor (M3-AchR) antagonist 4-DAMP or phosphatidylinositol 3 Kinase (PI3K) inhibitor LY294002 prior to burn and VNS. Heart tissue samples were collected at 6 and 24 hrs after injury to measure changes in apoptotic signalling pathways. Burn injury caused significant cardiac pathological changes, cardiomyocyte apoptosis, mitochondrial swelling and decrease in myocardial ATP content at 6 and 24 hrs after injury. These changes were significantly attenuated by VNS. VNS inhibited release of pro-apoptotic protein cytochrome C and apoptosis-inducing factor from mitochondria to cytosol by increasing the expression of Bcl-2, and the phosphorylation level of Bad (pBad(136)) and Akt (pAkt(308)). These protective changes were blocked by 4-DAMP or LY294002. We demonstrated that VNS protected against burn injury-induced cardiac injury by attenuating mitochondria dysfunction, likely through the M3-AchR and the PI3K/Akt signalling pathways.© 2013 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…