-
Observational Study
Clustering of critically ill patients using an individualized learning approach enables dose optimization of mobilization in the ICU.
- Kristina E Fuest, Bernhard Ulm, Nils Daum, Maximilian Lindholz, Marco Lorenz, Kilian Blobner, Nadine Langer, Carol Hodgson, Margaret Herridge, Manfred Blobner, and Stefan J Schaller.
- Technical University Munich, School of Medicine, Klinikum Rechts der Isar, Department of Anaesthesiology & Intensive Care Medicine, Munich, Germany.
- Crit Care. 2023 Jan 3; 27 (1): 11.
BackgroundWhile early mobilization is commonly implemented in intensive care unit treatment guidelines to improve functional outcome, the characterization of the optimal individual dosage (frequency, level or duration) remains unclear. The aim of this study was to demonstrate that artificial intelligence-based clustering of a large ICU cohort can provide individualized mobilization recommendations that have a positive impact on the likelihood of being discharged home.MethodsThis study is an analysis of a prospective observational database of two interdisciplinary intensive care units in Munich, Germany. Dosage of mobilization is determined by sessions per day, mean duration, early mobilization as well as average and maximum level achieved. A k-means cluster analysis was conducted including collected parameters at ICU admission to generate clinically definable clusters.ResultsBetween April 2017 and May 2019, 948 patients were included. Four different clusters were identified, comprising "Young Trauma," "Severely ill & Frail," "Old non-frail" and "Middle-aged" patients. Early mobilization (< 72 h) was the most important factor to be discharged home in "Young Trauma" patients (ORadj 10.0 [2.8 to 44.0], p < 0.001). In the cluster of "Middle-aged" patients, the likelihood to be discharged home increased with each mobilization level, to a maximum 24-fold increased likelihood for ambulating (ORadj 24.0 [7.4 to 86.1], p < 0.001). The likelihood increased significantly when standing or ambulating was achieved in the older, non-frail cluster (ORadj 4.7 [1.2 to 23.2], p = 0.035 and ORadj 8.1 [1.8 to 45.8], p = 0.010).ConclusionsAn artificial intelligence-based learning approach was able to divide a heterogeneous critical care cohort into four clusters, which differed significantly in their clinical characteristics and in their mobilization parameters. Depending on the cluster, different mobilization strategies supported the likelihood of being discharged home enabling an individualized and resource-optimized mobilization approach.Trial RegistrationClinical Trials NCT03666286, retrospectively registered 04 September 2018.© 2023. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.