-
- Yang Zhou, Jinhua Feng, Shuya Mei, Han Zhong, Ri Tang, Shunpeng Xing, Yuan Gao, Qiaoyi Xu, and Zhengyu He.
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
- Shock. 2023 Mar 1; 59 (3): 352359352-359.
AbstractBackground: Acute kidney injury (AKI) is a prevalent and serious complication among patients with sepsis-associated acute respiratory distress syndrome (ARDS). Prompt and accurate prediction of AKI has an important role in timely intervention, ultimately improving the patients' survival rate. This study aimed to establish machine learning models to predict AKI via thorough analysis of data derived from electronic medical records. Method: The data of eligible patients were retrospectively collected from the Medical Information Mart for Intensive Care III database from 2001 to 2012. The primary outcome was the development of AKI within 48 hours after intensive care unit admission. Four different machine learning models were established based on logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). The performance of all predictive models was evaluated using the area under receiver operating characteristic curve, precision-recall curve, confusion matrix, and calibration plot. Moreover, the discrimination ability of the machine learning models was compared with that of the Sequential Organ Failure Assessment (SOFA) model. Results; Among 1,085 sepsis-associated ARDS patients included in this research, 375 patients (34.6%) developed AKI within 48 hours after intensive care unit admission. Twelve predictive variables were selected and further used to establish the machine learning models. The XGBoost model yielded the most accurate predictions with the highest area under receiver operating characteristic curve (0.86) and accuracy (0.81). In addition, a novel shiny application based on the XGBoost model was established to predict the probability of developing AKI among patients with sepsis-associated ARDS. Conclusions: Machine learning models could be used for predicting AKI in patients with sepsis-associated ARDS. Accordingly, a user-friendly shiny application based on the XGBoost model with reliable predictive performance was released online to predict the probability of developing AKI among patients with sepsis-associated ARDS.Copyright © 2023 by the Shock Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.