You need to sign in or sign up before continuing.


  • Cochrane Db Syst Rev · Jan 2023

    Review

    Corticosteroid implants for chronic non-infectious uveitis.

    • Amit Reddy, Su-Hsun Liu, Christopher J Brady, Pamela C Sieving, and Alan G Palestine.
    • Department of Ophthalmology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA.
    • Cochrane Db Syst Rev. 2023 Jan 16; 1 (1): CD010469CD010469.

    BackgroundUveitis is a term used to describe a group of intraocular inflammatory diseases. Uveitis is the fifth most common cause of vision loss in high-income countries, with the highest incidence of disease in the working-age population. Corticosteroids are the mainstay of treatment for all subtypes of non-infectious uveitis. They can be administered orally, topically with drops, by periocular (around the eye) or intravitreal (inside the eye) injection, or by surgical implantation.ObjectivesTo determine the efficacy and safety of steroid implants in people with chronic non-infectious posterior uveitis, intermediate uveitis, and panuveitis.Search MethodsWe searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE Ovid, Embase, PubMed, LILACS, and three trials registries to November 2021.  SELECTION CRITERIA: We included randomized controlled trials comparing either fluocinolone acetonide (FA) or dexamethasone (DEX) intravitreal implants with standard-of-care therapy or sham procedures, with at least six months of follow-up after treatment. We included studies that enrolled participants of all ages, who had chronic non-infectious posterior uveitis, intermediate uveitis, or panuveitis with vision that was better than hand-motion.Data Collection And AnalysisWe applied standard Cochrane methodology.Main ResultsWe included data from four trials (683 participants, 907 eyes) that compared corticosteroid implants with either sham or standard-of-care therapy. Study characteristics and risk of bias Of the two trials that compared corticosteroid implants with sham procedure, one examined a 0.18 mg FA implant, and the other, a 0.7 mg DEX implant. The other two trials compared a 0.59 mg FA implant with standard-of-care therapy, which included systemic corticosteroids and immunosuppressive medications, if needed. We assessed the four trials to be at either low risk, or with some concerns of risk of bias across all domains. Findings Using sham procedure as control, combined results at the six-month primary time point suggested that corticosteroid implants may decrease the risk of uveitis recurrence by 60% (relative risk [RR] 0.40, 95% confidence interval [CI] 0.30 to 0.54; 2 trials, 282 participants; low-certainty evidence); and lead to a greater improvement in best-corrected visual acuity (BCVA; mean difference [MD] 0.22 logMAR, 95% CI 0.13 to 0.31; 1 trial, 153 participants; low-certainty evidence). Evidence based on a single-study report (146 participants) suggested that steroid implants may have no effects on visual functioning quality of life, measured on the National Eye Institute 25-Item Visual Function Questionnaire (MD 2.85, 95%CI -3.64 to 9.34; 1 trial, 146 participants; moderate-certainty evidence). Using standard-of care therapy as control, combined estimates at the 24-month primary time point suggested that corticosteroid implants were likely to decrease the risk of recurrence of uveitis by 54% (RR 0.46, 95% CI 0.35 to 0.60; 2 trials, 619 eyes). Combined estimates at 24 months also suggested that steroid implants may have little to no effects on BCVA (MD 0.05 logMAR, 95% CI -0.02 to 0.12; 2 trials, 619 eyes; low-certainty evidence). Evidence based on a single-study report (232 participants) suggested that steroid implants may have minimal clinical effects on visual functioning (MD 4.64, 95% CI 0.13 to 9.15; 1 trial, 232 participants; moderate-certainty evidence); physical functioning (SF-36 physical subscale MD 2.95, 95% CI 0.55 to 5.35; 1 trial, 232 participants; moderate-certainty evidence); or mental health (SF-36 mental subscale MD 3.65, 95% CI 0.52 to 6.78; 1 trial, 232 participants; moderate-certainty evidence); but not on EuroQoL (MD 6.17, 95% CI 1.87 to 10.47; 1 trial, 232 participants; moderate-certainty evidence); or EuroQoL-5D scale (MD 0.02, 95% CI -0.04 to 0.08; 1 trial, 232 participants; moderate-certainty evidence). Adverse effects Compared with sham procedures, corticosteroid implants may slightly increase the risk of cataract formation (RR 2.69, 95% CI 1.17 to 6.18; 1 trial, 90 eyes; low-certainty evidence), but not the risk of cataract progression (RR 2.00, 95% CI 0.65 to 6.12; 1 trial, 117 eyes; low-certainty evidence); or the need for surgery (RR 2.98, 95% CI 0.82 to 10.81; 1 trial, 180 eyes; low-certainty evidence), during up to 12 months of follow-up. These implants may increase the risk of elevated intraocular pressure ([IOP] RR 2.81, 95% CI 1.42 to 5.56; 2 trials, 282 participants; moderate-certainty evidence); and the need for IOP-lowering eyedrops (RR 1.85, 95% CI 1.05 to 3.25; 2 trials, 282 participants; moderate-certainty evidence); but not the need for IOP-lowering surgery (RR 0.72, 95% CI 0.13 to 4.17; 2 trials, 282 participants; moderate-certainty evidence).  Evidence comparing the 0.59 mg FA implant with standard-of-care suggested that the implant may increase the risk of cataract progression (RR 2.71, 95% CI 2.06 to 3.56; 2 trials, 210 eyes; low-certainty evidence); and the need for surgery (RR 2.98, 95% CI 2.33 to 3.79; 2 trials, 371 eyes; low-certainty evidence); along with the risk of elevated IOP (RR 3.64, 95% CI 2.71 to 4.87; 2 trials, 605 eyes; moderate-certainty evidence); and the need for medical (RR 3.04, 95% CI 2.36 to 3.91; 2 trials, 544 eyes; moderate-certainty evidence); or surgical interventions (RR 5.43, 95% CI 3.12 to 9.45; 2 trials, 599 eyes; moderate-certainty evidence). In either comparison, these implants did not increase the risk for endophthalmitis, retinal tear, or retinal detachment (moderate-certainty evidence).  AUTHORS' CONCLUSIONS: Our confidence is limited that local corticosteroid implants are superior to sham therapy or standard-of-care therapy in reducing the risk of uveitis recurrence. We demonstrated different effectiveness on BCVA relative to comparators in people with non-infectious uveitis. Nevertheless, the evidence suggests that these implants may increase the risk of cataract progression and IOP elevation, which will require interventions over time.  To better understand the efficacy and safety profiles of corticosteroid implants, we need future trials that examine implants of different doses, used for different durations. The trials should measure core standard outcomes that are universally defined, and measured at comparable follow-up time points.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.