• J. Neurol. Neurosurg. Psychiatr. · May 2023

    Deep learning-based personalised outcome prediction after acute ischaemic stroke.

    • Doo-Young Kim, Kang-Ho Choi, Ja-Hae Kim, Jina Hong, Seong-Min Choi, Man-Seok Park, and Ki-Hyun Cho.
    • Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, Korea (the Republic of).
    • J. Neurol. Neurosurg. Psychiatr. 2023 May 1; 94 (5): 369378369-378.

    BackgroundWhether deep learning models using clinical data and brain imaging can predict the long-term risk of major adverse cerebro/cardiovascular events (MACE) after acute ischaemic stroke (AIS) at the individual level has not yet been studied.MethodsA total of 8590 patients with AIS admitted within 5 days of symptom onset were enrolled. The primary outcome was the occurrence of MACEs (a composite of stroke, acute myocardial infarction or death) over 12 months. The performance of deep learning models (DeepSurv and Deep-Survival-Machines (DeepSM)) and traditional survival models (Cox proportional hazards (CoxPH) and random survival forest (RSF)) were compared using the time-dependent concordance index ([Formula: see text] index).ResultsGiven the top 1 to all 60 clinical factors according to feature importance, CoxPH and RSF yielded [Formula: see text] index of 0.7236-0.8222 and 0.7279-0.8335, respectively. Adding image features improved the performance of deep learning models and traditional models assisted by deep learning models. DeepSurv and DeepSM yielded the best [Formula: see text] index of 0.8496 and 0.8531 when images were added to all 39 relevant clinical factors, respectively. In feature importance, brain image was consistently ranked highly. Deep learning models automatically extracted the image features directly from personalised brain images and predicted the risk and date of future MACEs at the individual level.ConclusionsDeep learning models using clinical data and brain images could improve the prediction of MACEs and provide personalised outcome prediction for patients with AIS. Deep learning models will allow us to develop more accurate and tailored prognostic prediction systems that outperform traditional models.© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.