• Internal medicine · Jan 2023

    Mortality Prediction of COVID-19 in Hospitalized Patients Using the 2020 Diagnosis Procedure Combination Administrative Database of Japan.

    • Shuko Nojiri, Yoshiki Irie, Rie Kanamori, Toshio Naito, and Yuji Nishizaki.
    • Medical Technology Innovation Center, Juntendo University, Japan.
    • Intern. Med. 2023 Jan 15; 62 (2): 201213201-213.

    AbstractObjectives Numerous people have died from coronavirus disease 2019 (COVID-19) infection. Identifying crucial predictive biomarkers of disease mortality is critical to support decision-making and logistic planning in healthcare systems. This study investigated the association between mortality and medical factors and prescription records in 2020 in Japan, where COVID-19 prevalence and mortality remain relatively low. Methods This retrospective cohort study analyzed anonymous administrative data from the Diagnosis Procedure Combination (DPC) database in Japan. Results A total of 22,795 patients were treated in DPC hospitals in 2020 in Japan, and of these, 5,980 patients over 50 years old were hospitalized, with 299 (5.0%) dying. There were 2,399 severe patients among 11,440 total hospitalized patients (all ages). The results of a logistic model analysis revealed that an older age, male sex, Parkinson's disease, cerebrovascular diseases, and chronic kidney diseases were risk factors for mortality. A machine learning analysis identified an older age, male sex (mortality), pneumonia, drugs for acid-related disorders, analgesics, anesthesia, upper respiratory tract disease, drugs for functional gastrointestinal disorders, drugs for obstructive airway diseases, topical products for joint and muscular pain, diabetes, lipid-modifying agents, calcium channel blockers, drugs for diabetes, and agents acting on the renin-angiotensin system as risk factors for a severe status. Conclusions This COVID-19 mortality risk tool is a well-calibrated and accurate model for predicting mortality risk among hospitalized patients with COVID-19 in Japan, which is characterized by a relatively low COVID-19 prevalence, aging society, and high population density. This COVID-19 mortality prediction model can assist in resource utilization and patient and caregiver education and be useful as a risk stratification instrument for future research trials.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.