• Journal of neurotrauma · Jul 2023

    Multicenter Study

    Prediction of Mortality Among Patients with Isolated Traumatic Brain Injury Using Machine Learning Models in Asian Countries: An International Multicenter Cohort Study.

    • Juhyun Song, Sang Do Shin, Sabariah Faizah Jamaluddin, Wen-Chu Chiang, Hideharu Tanaka, Kyoung Jun Song, Sejoong Ahn, Jong-Hak Park, Jooyeong Kim, Han-Jin Cho, Sungwoo Moon, and Eun-Tae Jeon.
    • Department of Emergency Medicine, Korea University Anam Hospital, Seoul, Republic of Korea.
    • J. Neurotrauma. 2023 Jul 1; 40 (13-14): 137613871376-1387.

    AbstractAbstract Traumatic brain injury (TBI) is a significant healthcare concern in several countries, accounting for a major burden of morbidity, mortality, disability, and socioeconomic losses. Although conventional prognostic models for patients with TBI have been validated, their performance has been limited. Therefore, we aimed to construct machine learning (ML) models to predict the clinical outcomes in adult patients with isolated TBI in Asian countries. The Pan-Asian Trauma Outcome Study registry was used in this study, and the data were prospectively collected from January 1, 2015, to December 31, 2020. Among a total of 6540 patients (≥ 15 years) with isolated moderate and severe TBI, 3276 (50.1%) patients were randomly included with stratification by outcomes and subgrouping variables for model evaluation, and 3264 (49.9%) patients were included for model training and validation. Logistic regression was considered as a baseline, and ML models were constructed and evaluated using the area under the precision-recall curve (AUPRC) as the primary outcome metric, area under the receiver operating characteristic curve (AUROC), and precision at fixed levels of recall. The contribution of the variables to the model prediction was measured using the SHapley Additive exPlanations (SHAP) method. The ML models outperformed logistic regression in predicting the in-hospital mortality. Among the tested models, the gradient-boosted decision tree showed the best performance (AUPRC, 0.746 [0.700-0.789]; AUROC, 0.940 [0.929-0.952]). The most powerful contributors to model prediction were the Glasgow Coma Scale, O2 saturation, transfusion, systolic and diastolic blood pressure, body temperature, and age. Our study suggests that ML techniques might perform better than conventional multi-variate models in predicting the outcomes among adult patients with isolated moderate and severe TBI.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.