• Journal of neurosurgery · Aug 2023

    Use of adhesive cranial bone flap fixation without hardware to improve mechanical strength, resist cerebrospinal fluid leakage, and maintain anatomical alignment: a laboratory study.

    • Timothy R Smith, Kevin T Foley, Sourabh Boruah, Jonathan R Slotkin, Eric Woodard, John B Lazor, Christy Cavaleri, Michael C Brown, Brittany McDonough, Brian Hess, and Douglas W Van Citters.
    • 1Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts.
    • J. Neurosurg. 2023 Aug 1; 139 (2): 517527517-527.

    ObjectiveTitanium plates and screws (TPS) are the current standard of care for fixation of cranial bone flaps. These materials have been used for decades but have known potential complications, including flap migration, bone resorption/incomplete osseous union, hardware protrusion, cosmetic deformity, wound infection/dehiscence, and cerebrospinal fluid (CSF) leakage. This study evaluated the efficacy of a novel mineral-organic bone adhesive (Tetranite) for cranial bone flap fixation.MethodsCraniotomy bone flaps created in human cadaveric skulls were tested under quasistatic and impact loading in the following conditions: 1) uncut skull; 2) bone flaps fixated with TPS alone; and 3) bone flaps fixated with bone adhesive alone. All fixative surgical procedures were performed by a group of 16 neurosurgeons in a simulated surgical environment. The position of adhesive-fixated cranial bone flaps was measured using computed tomography and compared with their original native location. The resistance of adhesive-fixated cranial bone flaps to simulated CSF leakage was also evaluated. Because there was a gap around the circumference of the TPS-fixated specimens that was visible to the naked eye, pressurized CSF leak testing was not attempted on them.ResultsAdhesive-fixated bone flaps showed significantly stiffer and stronger quasistatic responses than TPS-fixated specimens. The strength and stiffness of the adhesive-fixated specimens were not significantly different from those of the uncut native skulls. Total and plastic deflections under 6-J impact were significantly less for adhesive-fixed bone flaps than TPS. There were no significant differences in any subthreshold impact metrics between the adhesive-fixed and native specimens at both 6-J and 12-J impact levels, with 1 exception. Plastic deflection at 6-J impact was significantly less in adhesive-fixated bone flaps than in native specimens. The energy to failure of the adhesive-fixated specimens was not significantly different from that of the native specimens. Time since fixation (20 minutes vs 10 days) did not significantly affect the impact failure properties of the adhesive-fixated specimens. Of the 16 adhesive-fixated craniotomy specimens tested, 14 did not leak at pressures as high as 40 mm Hg.ConclusionsThe neurosurgeons in this study had no prior exposure or experience with the bone adhesive. Despite this, improved resistance to CSF egress, superior mechanical properties, and better cosmetic outcomes were demonstrated with bone adhesive compared with TPS.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…