• Medicina · Jan 2023

    Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.

    • Ruoran Wang, Linrui Cai, Jing Zhang, Min He, and Jianguo Xu.
    • Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
    • Medicina (Kaunas). 2023 Jan 15; 59 (1).

    AbstractBackground: Acute respiratory distress syndrome (ARDS) commonly develops in traumatic brain injury (TBI) patients and is a risk factor for poor prognosis. We designed this study to evaluate the performance of several machine learning algorithms for predicting ARDS in TBI patients. Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for this study. ARDS was identified according to the Berlin definition. Included TBI patients were divided into the training cohort and the validation cohort with a ratio of 7:3. Several machine learning algorithms were utilized to develop predictive models with five-fold cross validation for ARDS including extreme gradient boosting, light gradient boosting machine, Random Forest, adaptive boosting, complement naïve Bayes, and support vector machine. The performance of machine learning algorithms were evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy and F score. Results: 649 TBI patients from the MIMIC-III database were included with an ARDS incidence of 49.5%. The random forest performed the best in predicting ARDS in the training cohort with an AUC of 1.000. The XGBoost and AdaBoost ranked the second and the third with an AUC of 0.989 and 0.815 in the training cohort. The random forest still performed the best in predicting ARDS in the validation cohort with an AUC of 0.652. AdaBoost and XGBoost ranked the second and the third with an AUC of 0.631 and 0.620 in the validation cohort. Several mutual top features in the random forest and AdaBoost were discovered including age, initial systolic blood pressure and heart rate, Abbreviated Injury Score chest, white blood cells, platelets, and international normalized ratio. Conclusions: The random forest and AdaBoost based models have stable and good performance for predicting ARDS in TBI patients. These models could help clinicians to evaluate the risk of ARDS in early stages after TBI and consequently adjust treatment decisions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.