• Ann Emerg Med · Jun 2023

    Use of Real-Time Information to Predict Future Arrivals in the Emergency Department.

    • Yue Hu, Kenrick D Cato, Carri W Chan, Jing Dong, Nicholas Gavin, Sarah C Rossetti, and Bernard P Chang.
    • Decision, Risk, and Operations Division, Columbia Business School, New York, NY. Electronic address: yh2987@columbia.edu.
    • Ann Emerg Med. 2023 Jun 1; 81 (6): 728737728-737.

    Study ObjectiveWe aimed to build prediction models for shift-level emergency department (ED) patient volume that could be used to facilitate prediction-driven staffing. We sought to evaluate the predictive power of rich real-time information and understand 1) which real-time information had predictive power and 2) what prediction techniques were appropriate for forecasting ED demand.MethodsWe conducted a retrospective study in an ED site in a large academic hospital in New York City. We examined various prediction techniques, including linear regression, regression trees, extreme gradient boosting, and time series models. By comparing models with and without real-time predictors, we assessed the potential gain in prediction accuracy from real-time information.ResultsReal-time predictors improved prediction accuracy on models without contemporary information from 5% to 11%. Among extensive real-time predictors examined, recent patient arrival counts, weather, Google trends, and concurrent patient comorbidity information had significant predictive power. Out of all the forecasting techniques explored, SARIMAX (Seasonal Autoregressive Integrated Moving Average with eXogenous factors) achieved the smallest out-of-sample the root mean square error (RMSE) of 14.656 and mean absolute prediction error (MAPE) of 8.703%. Linear regression was the second best, with out-of-sample RMSE and MAPE equal to 15.366 and 9.109%, respectively.ConclusionReal-time information was effective in improving the prediction accuracy of ED demand. Practice and policy implications for designing staffing paradigms with real-time demand forecasts to reduce ED congestion were discussed.Copyright © 2022 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.