• Anesthesiology · Feb 2002

    Isoflurane and nociception: spinal alpha2A adrenoceptors mediate antinociception while supraspinal alpha1 adrenoceptors mediate pronociception.

    • Wade S Kingery, Geeta S Agashe, Tian Z Guo, Shigehito Sawamura, M Frances Davies, J David Clark, Brian K Kobilka, and Mervyn Maze.
    • Department of Anesthesia, Stanford University, Stanford, California, USA.
    • Anesthesiology. 2002 Feb 1;96(2):367-74.

    BackgroundThe authors recently established that the analgesic actions of the inhalation anesthetic nitrous oxide were mediated by noradrenergic bulbospinal neurons and spinal alpha2B adrenoceptors. They now determined whether noradrenergic brainstem nuclei and descending spinal pathways are responsible for the antinociceptive actions of the inhalation anesthetic isoflurane, and which alpha adrenoceptors mediate this effect.MethodsAfter selective lesioning of noradrenergic nuclei by intracerebroventricular application of the mitochondrial toxin saporin coupled to the antibody directed against dopamine beta hydroxylase (DbetaH-saporin), the antinociceptive action of isoflurane was determined. Antagonists for the alpha1 and alpha2 adrenoceptors were injected at spinal and supraspinal sites in intact and spinally transected rats to identify the noradrenergic pathways mediating isoflurane antinociception. Null mice for each of the three alpha2-adrenoceptor subtypes (alpha2A, alpha2B, and alpha2C) and their wild-type cohorts were tested for their antinociceptive response to isoflurane.ResultsBoth DbetaH-saporin treatment and chronic spinal transection enhanced the antinociceptive effects of isoflurane. The alpha1-adrenoceptor antagonist prazosin also enhanced isoflurane antinociception at a supraspinal site of action. The alpha2-adrenoceptor antagonist yohimbine inhibited isoflurane antinociception, and this effect was mediated by spinal alpha2 adrenoceptors. Null mice for the alpha2A-adrenoceptor subtype showed a reduced antinociceptive response to isoflurane.ConclusionsThe authors suggest that, at clinically effective concentrations, isoflurane can modulate nociception via three different mechanisms: (1) a pronociceptive effect requiring descending spinal pathways, brainstem noradrenergic nuclei, and supraspinal alpha1 adrenoceptors; (2) an antinociceptive effect requiring descending noradrenergic neurons and spinal alpha2A adrenoceptors; and (3) an antinociceptive effect mediated within the spinal cord for which no role for adrenergic mechanism has been found.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.