• Cochrane Db Syst Rev · Jan 2023

    Review Meta Analysis

    Prognosis of adults and children following a first unprovoked seizure.

    • Aidan Neligan, Guleed Adan, Sarah J Nevitt, Angie Pullen, Josemir W Sander, Laura Bonnett, and Anthony G Marson.
    • Homerton University Hospital, NHS Foundation Trust, London, UK.
    • Cochrane Db Syst Rev. 2023 Jan 23; 1 (1): CD013847CD013847.

    BackgroundEpilepsy is clinically defined as two or more unprovoked epileptic seizures more than 24 hours apart. Given that, a diagnosis of epilepsy can be associated with significant morbidity and mortality, it is imperative that clinicians (and people with seizures and their relatives) have access to accurate and reliable prognostic estimates, to guide clinical practice on the risks of developing further unprovoked seizures (and by definition, a diagnosis of epilepsy) following single unprovoked epileptic seizure.Objectives1. To provide an accurate estimate of the proportion of individuals going on to have further unprovoked seizures at subsequent time points following a single unprovoked epileptic seizure (or cluster of epileptic seizures within a 24-hour period, or a first episode of status epilepticus), of any seizure type (overall prognosis). 2. To evaluate the mortality rate following a first unprovoked epileptic seizure.Search MethodsWe searched the following databases on 19 September 2019 and again on 30 March 2021, with no language restrictions. The Cochrane Register of Studies (CRS Web), MEDLINE Ovid (1946 to March 29, 2021), SCOPUS (1823 onwards), ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). CRS Web includes randomized or quasi-randomized, controlled trials from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform (ICTRP), the Cochrane Central Register of Controlled Trials (CENTRAL), and the Specialized Registers of Cochrane Review Groups including Epilepsy. In MEDLINE (Ovid) the coverage end date always lags a few days behind the search date.Selection CriteriaWe included studies, both retrospective and prospective, of all age groups (except those in the neonatal period (< 1 month of age)), of people with a single unprovoked seizure, followed up for a minimum of six months, with no upper limit of follow-up, with the study end point being seizure recurrence, death, or loss to follow-up. To be included, studies must have included at least 30 participants. We excluded studies that involved people with seizures that occur as a result of an acute precipitant or provoking factor, or in close temporal proximity to an acute neurological insult, since these are not considered epileptic in aetiology (acute symptomatic seizures). We also excluded people with situational seizures, such as febrile convulsions.Data Collection And AnalysisTwo review authors conducted the initial screening of titles and abstracts identified through the electronic searches, and removed non-relevant articles. We obtained the full-text articles of all remaining potentially relevant studies, or those whose relevance could not be determined from the abstract alone and two authors independently assessed for eligibility. All disagreements were resolved through discussion with no need to defer to a third review author. We extracted data from included studies using a data extraction form based on the checklist for critical appraisal and data extraction for systematicreviews of prediction modelling studies (CHARMS). Two review authors then appraised the included studies, using a standardised approach based on the quality in prognostic studies (QUIPS) tool, which was adapted for overall prognosis (seizure recurrence). We conducted a meta-analysis using Review Manager 2014, with a random-effects generic inverse variance meta-analysis model, which accounted for any between-study heterogeneity in the prognostic effect. We then summarised the meta-analysis by the pooled estimate (the average prognostic factor effect), its 95% confidence interval (CI), the estimates of I² and Tau² (heterogeneity), and a 95% prediction interval for the prognostic effect in a single population at three various time points, 6 months, 12 months and 24 months. Subgroup analysis was performed according to the ages of the cohorts included; studies involving all ages, studies that recruited adult only and those that were purely paediatric.Main ResultsFifty-eight studies (involving 54 cohorts), with a total of 12,160 participants (median 147, range 31 to 1443), met the inclusion criteria for the review. Of the 58 studies, 26 studies were paediatric studies, 16 were adult and the remaining 16 studies were a combination of paediatric and adult populations. Most included studies had a cohort study design with two case-control studies and one nested case-control study. Thirty-two studies (29 cohorts) reported a prospective longitudinal design whilst 15 studies had a retrospective design whilst the remaining studies were randomised controlled trials. Nine of the studies included presented mortality data following a first unprovoked seizure. For a mortality study to be included, a proportional mortality ratio (PMR) or a standardised mortality ratio (SMR) had to be given at a specific time point following a first unprovoked seizure. To be included in the meta-analysis a study had to present clear seizure recurrence data at 6 months, 12 months or 24 months. Forty-six studies were included in the meta-analysis, of which 23 were paediatric, 13 were adult, and 10 were a combination of paediatric and adult populations. A meta-analysis was performed at three time points; six months, one year and two years for all ages combined, paediatric and adult studies, respectively. We found an estimated overall seizure recurrence of all included studies at six months of 27% (95% CI 24% to 31%), 36% (95% CI 33% to 40%) at one year and 43% (95% CI 37% to 44%) at two years, with slightly lower estimates for adult subgroup analysis and slightly higher estimates for paediatric subgroup analysis. It was not possible to provide a summary estimate of the risk of seizure recurrence beyond these time points as most of the included studies were of short follow-up and too few studies presented recurrence rates at a single time point beyond two years. The evidence presented was found to be of moderate certainty.Authors' ConclusionsDespite the limitations of the data (moderate-certainty of evidence), mainly relating to clinical and methodological heterogeneity we have provided summary estimates for the likely risk of seizure recurrence at six months, one year and two years for both children and adults. This provides information that is likely to be useful for the clinician counselling patients (or their parents) on the probable risk of further seizures in the short-term whilst acknowledging the paucity of long-term recurrence data, particularly beyond 10 years.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…