• Military medicine · Jul 2023

    Cognitive Load Influences Drop Jump Landing Mechanics During Cognitive-Motor-Simulated Shooting.

    • Gillian McCarren, Meredith Chaput, Dustin R Grooms, Cody R Criss, Sean Buckley, Philip Brazalovich, Jae Yom, and Janet E Simon.
    • Intercollegiate Athletics, Temple University, Philadelphia, PA 19122, USA.
    • Mil Med. 2023 Jul 22; 188 (7-8): e2102e2108e2102-e2108.

    IntroductionMilitary duties require immense cognitive-motor multitasks that may predispose soldiers to musculoskeletal injury. Most cognitive challenges performed in the research laboratory are not tactical athlete specific, limiting generalizability and transferability to in-field scenarios. The purpose of this study was to determine the impact of a cognitive-motor multitask (forward drop jump landing while simultaneously performing simulated shooting) on knee kinetics and kinematics.MethodsTwenty-four healthy collegiate Reserve Officer's Training Corps members (18 males and 6 females, 20.42 ± 1.28 years, 174.54 ± 10.69 cm, 78.11 ± 14.96 kg) volunteered, and knee kinetics and kinematics were assessed between baseline and cognitive-loaded conditions. Repeated measures ANOVAs were conducted for each dependent variable with the within-subject factor of condition (baseline vs. cognitive load).ResultsUnivariate ANOVAs indicated that knee flexion angle at initial contact (IC) (decreased 6.07°; d = 3.14), knee flexion displacement (increased 6.78°; d = 1.30), knee abduction angle at IC (increased 2.3°; d = 1.46), peak knee abduction angle (increased 3.04°; d = 0.77), and peak vertical ground reaction force (increased 0.81 N/kg; d = 2.13) were significant between conditions (P < .001). Therefore, cognitive load resulted in decreased knee flexion and increased knee abduction angle at IC and greater peak vertical ground reaction force, all factors commonly associated with knee injury risk. Peak knee flexion angle and knee abduction displacement were not significant between conditions (P > .05).ConclusionsCognitive challenge induced knee landing biomechanics commonly associated with injury risk. Injury risk screening or return-to-training or duty assessments in military personnel might consider both baseline and cognitive conditions.© The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.