• Lancet · Feb 2023

    Cooling cities through urban green infrastructure: a health impact assessment of European cities.

    • Tamara Iungman, Marta Cirach, Federica Marando, Evelise Pereira Barboza, Sasha Khomenko, Pierre Masselot, Marcos Quijal-Zamorano, Natalie Mueller, Antonio Gasparrini, José Urquiza, Mehdi Heris, Meelan Thondoo, and Mark Nieuwenhuijsen.
    • Institute for Global Health, Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
    • Lancet. 2023 Feb 18; 401 (10376): 577589577-589.

    BackgroundHigh ambient temperatures are associated with many health effects, including premature mortality. The combination of global warming due to climate change and the expansion of the global built environment mean that the intensification of urban heat islands (UHIs) is expected, accompanied by adverse effects on population health. Urban green infrastructure can reduce local temperatures. We aimed to estimate the mortality burden that could be attributed to UHIs and the mortality burden that would be prevented by increasing urban tree coverage in 93 European cities.MethodsWe did a quantitative health impact assessment for summer (June 1-Aug 31), 2015, of the effect of UHIs on all-cause mortality for adults aged 20 years or older in 93 European cities. We also estimated the temperature reductions that would result from increasing tree coverage to 30% for each city and estimated the number of deaths that could be potentially prevented as a result. We did all analyses at a high-resolution grid-cell level (250 × 250 m). We propagated uncertainties in input analyses by using Monte Carlo simulations to obtain point estimates and 95% CIs. We also did sensitivity analyses to test the robustness of our estimates.FindingsThe population-weighted mean city temperature increase due to UHI effects was 1·5°C (SD 0·5; range 0·5-3·0). Overall, 6700 (95% CI 5254-8162) premature deaths could be attributable to the effects of UHIs (corresponding to around 4·33% [95% CI 3·37-5·28] of all summer deaths). We estimated that increasing tree coverage to 30% would cool cities by a mean of 0·4°C (SD 0·2; range 0·0-1·3). We also estimated that 2644 (95% CI 2444-2824) premature deaths could be prevented by increasing city tree coverage to 30%, corresponding to 1·84% (1·69-1·97) of all summer deaths.InterpretationOur results showed the deleterious effects of UHIs on mortality and highlighted the health benefits of increasing tree coverage to cool urban environments, which would also result in more sustainable and climate-resilient cities.FundingGoGreenRoutes, Spanish Ministry of Science and Innovation, Institute for Global Health, UK Medical Research Council, European Union's Horizon 2020 Project Exhaustion.Copyright © 2023 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.