• J Gen Intern Med · Aug 2023

    Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals.

    • Kevin Coppa, Eun Ji Kim, Michael I Oppenheim, Kevin R Bock, Theodoros P Zanos, and Jamie S Hirsch.
    • Clinical Digital Solutions, Northwell Health, New Hyde Park, NY, USA.
    • J Gen Intern Med. 2023 Aug 1; 38 (10): 229823072298-2307.

    BackgroundNon-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems.ObjectiveTo develop and validate a prediction model for ambulatory non-arrivals.DesignRetrospective cohort study.Patients Or SubjectsPatients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022.Main MeasuresNon-arrivals to scheduled appointments.Key ResultsThere were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767-0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient's prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration.ConclusionsUsing a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.© 2023. The Author(s), under exclusive licence to Society of General Internal Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.