• Neurocritical care · Feb 2023

    Observational Study

    Classification of Level of Consciousness in a Neurological ICU Using Physiological Data.

    • Louis A Gomez, Qi Shen, Kevin Doyle, Athina Vrosgou, Angela Velazquez, Murad Megjhani, Shivani Ghoshal, David Roh, Sachin Agarwal, Soojin Park, Jan Claassen, and Samantha Kleinberg.
    • Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA.
    • Neurocrit Care. 2023 Feb 1; 38 (1): 118128118-128.

    BackgroundImpaired consciousness is common in intensive care unit (ICU) patients, and an individual's degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients.MethodsWe studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS-), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature).ResultsOn the commonly performed classification task of VS/UWS versus MCS-, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63-0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59-0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60-0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55-0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51-0.71) using the variables available in most ICUs.ConclusionsWe find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.© 2022. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…