• Journal of critical care · Jun 2023

    Diagnosing acute kidney injury ahead of time in critically ill septic patients using kinetic estimated glomerular filtration rate.

    • Lada Lijović, Stipe Pelajić, Fatime Hawchar, Ivaylo Minev, Beatriz Helena Cermaria Soares da Silva, Alessandra Angelucci, Ari Ercole, Harm-Jan de Grooth, Patrick Thoral, Tomislav Radočaj, and Paul Elbers.
    • Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam Public Health, Amsterdam Cardiovascular Science, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands; Department of Anesthesiology, Intensive Care and Pain Management, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia. Electronic address: l.lijovic@amsterdamumc.nl.
    • J Crit Care. 2023 Jun 1; 75: 154276154276.

    IntroductionAccurate and actionable diagnosis of Acute Kidney Injury (AKI) ahead of time is important to prevent or mitigate renal insufficiency. The purpose of this study was to evaluate the performance of Kinetic estimated Glomerular Filtration Rate (KeGFR) in timely predicting AKI in critically ill septic patients.MethodsWe conducted a retrospective analysis on septic ICU patients who developed AKI in AmsterdamUMCdb, the first freely available European ICU database. The reference standard for AKI was the Kidney Disease: Improving Global Outcomes (KDIGO) classification based on serum creatinine and urine output (UO). Prediction of AKI was based on stages defined by KeGFR and UO. Classifications were compared by length of ICU stay (LOS), need for renal replacement therapy and 28-day mortality. Predictive performance and time between prediction and diagnosis were calculated.ResultsOf 2492 patients in the cohort, 1560 (62.0%) were diagnosed with AKI by KDIGO and 1706 (68.5%) by KeGFR criteria. Disease stages had agreement of kappa = 0.77, with KeGFR sensitivity 93.2%, specificity 73.0% and accuracy 85.7%. Median time to recognition of AKI Stage 1 was 13.2 h faster for KeGFR, and 7.5 h and 5.0 h for Stages 2 and 3. Outcomes revealed a slight difference in LOS and 28-day mortality for Stage 1.ConclusionsPredictive performance of KeGFR combined with UO criteria for diagnosing AKI is excellent. Compared to KDIGO, deterioration of renal function was identified earlier, most prominently for lower stages of AKI. This may shift the actionable window for preventing and mitigating renal insufficiency.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…