• Medicine · Feb 2023

    Case Reports

    Identification of THSD7B and PRMT9 mutations as risk factors for familial lung adenocarcinoma: A case report.

    • Qianqian Zhang, Yanwei Zhao, Zhaona Song, Qiang Zhang, Conghui Tian, Rongrong Li, Juan Zheng, Lili Yan, Mingliang Gu, Xiaodong Jia, and Mingjun Li.
    • Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China.
    • Medicine (Baltimore). 2023 Feb 10; 102 (6): e32872e32872.

    RationaleLung tumors arise from the unrestrained malignant growth of pulmonary epithelial cells. Lung cancer cases include both small and non-small cell lung cancers, with lung adenocarcinoma (LUAD) accounting for roughly half of all non-small cell lung cancer cases. Research focused on familial cancers suggests that approximately 8% of lung cancer cases are linked to genetic susceptibility or heritability. The precise genetic factors that underlie the onset of lung cancer, however, remain to be firmly established.Patient ConcernsA 43-year-old presented with nodules in the lower left lung lobe. Following initial antibiotic treatment in a local hospital, these nodules remained present and the patient subsequently underwent the resection of the left lower lobe of the lung. The patient also had 4 family members with a history of LUAD.DiagnosisImmunohistochemical staining results including cytokeratin 7 (+), TTF-1 (+), new aspartic proteinase A (+), CK5/6 (-), P63 (-), and Ki-67 (5%+) were consistent with a diagnosis of LUAD.InterventionWhole exome sequencing analyses of 5 patients and 6 healthy family members were performed to explore potential mutations associated with familial LUAD.OutcomesWhole exome sequencing was conducted, confirming that the proband and their 4 other family members with LUAD harbored heterozygous THSD7B (c.A4000G:p.S1334G) mutations and homozygous PRMT9 (c.G40T:p.G14C) mutations, as further confirmed via Sanger sequencing. These mutations were predicted to be deleterious using the SIFT, PolyPhen2, and MutationTaster algorithms. Protein structure analyses indicated that the mutation of the serine at amino acid position 1334 in THSD7B to a glycine would reduce the minimum free energy from 8.08 kcal/mol to 68.57 kcal/mol. The identified mutation in the PRMT9 mutation was not present in the predicted protein structure. I-Mutant2.0 predictions indicated that both of these mutations (THSD7B:p.S1334G and PRMT9: p.G14C) were predicted to reduce protein stability.LessonsHeterozygous THSD7B (c.A4000G:p.S1334G) and the homozygous PRMT9 (c.G40T:p.G14C) mutations were found to be linked to LUAD incidence in the analyzed family. Early analyses of these genetic loci and timely genetic counseling may provide benefits and aid in the early diagnosis of familial LUAD.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.