-
- Adam L Kenet, Rahul Pemmaraju, Sejal Ghate, Shreeya Raghunath, Yifan Zhang, Mordred Yuan, Tony Y Wei, Jacob M Desman, Joseph L Greenstein, Casey O Taylor, Timothy Ruchti, James Fackler, and Jules Bergmann.
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States; Institute for Computational Medicine, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States. Electronic address: akenet1@jhu.edu.
- Resuscitation. 2023 Apr 1; 185: 109740109740.
BackgroundCardiac arrest is a leading cause of mortality prior to discharge for children admitted to the pediatric intensive care unit. To address this problem, we used machine learning to predict cardiac arrest up to three hours in advance.MethodsOur data consists of 240 Hz ECG waveform data, 0.5 Hz physiological time series data, medications, and demographics from 1,145 patients in the pediatric intensive care unit at the Johns Hopkins Hospital, 15 of whom experienced a cardiac arrest. The data were divided into training, validating, and testing sets, and features were generated every five minutes. 23 heart rate variability (HRV) metrics were determined from ECG waveforms. 96 summary statistics were calculated for 12 vital signs, such as respiratory rate and blood pressure. Medications were classified into 42 therapeutic drug classes. Binary features were generated to indicate the administration of these different drugs. Next, six machine learning models were evaluated: logistic regression, support vector machine, random forest, XGBoost, LightGBM, and a soft voting ensemble.ResultsXGBoost performed the best, with 0.971 auROC, 0.797 auPRC, 99.5% sensitivity, and 69.6% specificity on an independent test set.ConclusionWe have created high-performing models that identify signatures of in-hospital cardiac arrest (IHCA) that may not be evident to clinicians. These signatures include a combination of heart rate variability metrics, vital signs data, and therapeutic drug classes. These machine learning models can predict IHCA up to three hours prior to onset with high performance, allowing clinicians to intervene earlier, improving patient outcomes.Copyright © 2023 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.