• Anaesthesia · Jul 2023

    Predicting severe pain after major surgery: a secondary analysis of the Peri-operative Quality Improvement Programme (PQIP) dataset.

    • R A Armstrong, A Fayaz, G L P Manning, S R Moonesinghe, Peri-operative Quality Improvement Programme (PQIP) delivery team, C M Oliver, and PQIP collaborative.
    • Department of Population Health Sciences, University of Bristol, Bristol, UK.
    • Anaesthesia. 2023 Jul 1; 78 (7): 840852840-852.

    AbstractAcute postoperative pain is common, distressing and associated with increased morbidity. Targeted interventions can prevent its development. We aimed to develop and internally validate a predictive tool to pre-emptively identify patients at risk of severe pain following major surgery. We analysed data from the UK Peri-operative Quality Improvement Programme to develop and validate a logistic regression model to predict severe pain on the first postoperative day using pre-operative variables. Secondary analyses included the use of peri-operative variables. Data from 17,079 patients undergoing major surgery were included. Severe pain was reported by 3140 (18.4%) patients; this was more prevalent in females, patients with cancer or insulin-dependent diabetes, current smokers and in those taking baseline opioids. Our final model included 25 pre-operative predictors with an optimism-corrected c-statistic of 0.66 and good calibration (mean absolute error 0.005, p = 0.35). Decision-curve analysis suggested an optimal cut-off value of 20-30% predicted risk to identify high-risk individuals. Potentially modifiable risk factors included smoking status and patient-reported measures of psychological well-being. Non-modifiable factors included demographic and surgical factors. Discrimination was improved by the addition of intra-operative variables (likelihood ratio χ2 496.5, p < 0.001) but not by the addition of baseline opioid data. On internal validation, our pre-operative prediction model was well calibrated but discrimination was moderate. Performance was improved with the inclusion of peri-operative covariates suggesting pre-operative variables alone are not sufficient to adequately predict postoperative pain.© 2023 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…