• J Travel Med · Oct 2023

    Development of a prediction model for the Acquisition of Extended Spectrum Beta-Lactam Resistant Organisms in U.S. international travellers.

    • David Garrett Brown, Colin J Worby, Melissa A Pender, Ben J Brintz, Edward T Ryan, Sushmita Sridhar, Elizabeth Oliver, Jason B Harris, Sarah E Turbett, Sowmya R Rao, Ashlee M Earl, Regina C LaRocque, and Daniel T Leung.
    • Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT, USA.
    • J Travel Med. 2023 Oct 31; 30 (6).

    BackgroundExtended spectrum beta-lactamase producing Enterobacterales (ESBL-PE) present a risk to public health by limiting the efficacy of multiple classes of beta-lactam antibiotics against infection. International travellers may acquire these organisms and identifying individuals at high risk of acquisition could help inform clinical treatment or prevention strategies.MethodsWe used data collected from a cohort of 528 international travellers enrolled in a multicentre US-based study to derive a clinical prediction rule (CPR) to identify travellers who developed ESBL-PE colonization, defined as those with new ESBL positivity in stool upon return to the United States. To select candidate features, we used data collected from pre-travel and post-travel questionnaires, alongside destination-specific data from external sources. We utilized LASSO regression for feature selection, followed by random forest or logistic regression modelling, to derive a CPR for ESBL acquisition.ResultsA CPR using machine learning and logistic regression on 10 features has an internally cross-validated area under the receiver operating characteristic curve (cvAUC) of 0.70 (95% confidence interval 0.69-0.71). We also demonstrate that a four-feature model performs similarly to the 10-feature model, with a cvAUC of 0.68 (95% confidence interval 0.67-0.69). This model uses traveller's diarrhoea, and antibiotics as treatment, destination country waste management rankings and destination regional probabilities as predictors.ConclusionsWe demonstrate that by integrating traveller characteristics with destination-specific data, we could derive a CPR to identify those at highest risk of acquiring ESBL-PE during international travel.© International Society of Travel Medicine 2023. Published by Oxford University Press.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.