• The lancet oncology · Apr 2023

    Multicenter Study

    Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study.

    • Shaoxu Wu, Guibin Hong, Abai Xu, Hong Zeng, Xulin Chen, Yun Wang, Yun Luo, Peng Wu, Cundong Liu, Ning Jiang, Qiang Dang, Cheng Yang, Bohao Liu, Runnan Shen, Zeshi Chen, Chengxiao Liao, Zhen Lin, Jin Wang, and Tianxin Lin.
    • Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, Guangdong, China.
    • Lancet Oncol. 2023 Apr 1; 24 (4): 360370360-370.

    BackgroundAccurate lymph node staging is important for the diagnosis and treatment of patients with bladder cancer. We aimed to develop a lymph node metastases diagnostic model (LNMDM) on whole slide images and to assess the clinical effect of an artificial intelligence-assisted (AI) workflow.MethodsIn this retrospective, multicentre, diagnostic study in China, we included consecutive patients with bladder cancer who had radical cystectomy and pelvic lymph node dissection, and from whom whole slide images of lymph node sections were available, for model development. We excluded patients with non-bladder cancer and concurrent surgery, or low-quality images. Patients from two hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-sen University and Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China) were assigned before a cutoff date to a training set and after the date to internal validation sets for each hospital. Patients from three other hospitals (the Third Affiliated Hospital of Sun Yat-sen University, Nanfang Hospital of Southern Medical University, and the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China) were included as external validation sets. A validation subset of challenging cases from the five validation sets was used to compare performance between the LNMDM and pathologists, and two other datasets (breast cancer from the CAMELYON16 dataset and prostate cancer from the Sun Yat-sen Memorial Hospital of Sun Yat-sen University) were collected for a multi-cancer test. The primary endpoint was diagnostic sensitivity in the four prespecified groups (ie, the five validation sets, a single-lymph-node test set, the multi-cancer test set, and the subset for a performance comparison between the LNMDM and pathologists).FindingsBetween Jan 1, 2013 and Dec 31, 2021, 1012 patients with bladder cancer had radical cystectomy and pelvic lymph node dissection and were included (8177 images and 20 954 lymph nodes). We excluded 14 patients (165 images) with concurrent non-bladder cancer and also excluded 21 low-quality images. We included 998 patients and 7991 images (881 [88%] men; 117 [12%] women; median age 64 years [IQR 56-72]; ethnicity data not available; 268 [27%] with lymph node metastases) to develop the LNMDM. The area under the curve (AUC) for accurate diagnosis of the LNMDM ranged from 0·978 (95% CI 0·960-0·996) to 0·998 (0·996-1·000) in the five validation sets. Performance comparisons between the LNMDM and pathologists showed that the diagnostic sensitivity of the model (0·983 [95% CI 0·941-0·998]) substantially exceeded that of both junior pathologists (0·906 [0·871-0·934]) and senior pathologists (0·947 [0·919-0·968]), and that AI assistance improved sensitivity for both junior (from 0·906 without AI to 0·953 with AI) and senior (from 0·947 to 0·986) pathologists. In the multi-cancer test, the LNMDM maintained an AUC of 0·943 (95% CI 0·918-0·969) in breast cancer images and 0·922 (0·884-0·960) in prostate cancer images. In 13 patients, the LNMDM detected tumour micrometastases that had been missed by pathologists who had previously classified these patients' results as negative. Receiver operating characteristic curves showed that the LNMDM would enable pathologists to exclude 80-92% of negative slides while maintaining 100% sensitivity in clinical application.InterpretationWe developed an AI-based diagnostic model that did well in detecting lymph node metastases, particularly micrometastases. The LNMDM showed substantial potential for clinical applications in improving the accuracy and efficiency of pathologists' work.FundingNational Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, and the Guangdong Provincial Clinical Research Centre for Urological Diseases.Copyright © 2023 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…