-
J. Thorac. Cardiovasc. Surg. · Jun 2023
Transbronchial real-time lung tumor localization with folate receptor-targeted near-infrared molecular imaging: A proof of concept study in animal models.
- Tsukasa Ishiwata, Yoshihisa Hiraishi, Nicholas Bernards, Yuki Sata, Alexander Gregor, Masato Aragaki, and Kazuhiro Yasufuku.
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
- J. Thorac. Cardiovasc. Surg. 2023 Jun 1; 165 (6): e240e251e240-e251.
ObjectiveThe diagnostic yield of bronchoscopy is not satisfactory, even with recent navigation technologies, especially for tumors located outside of the bronchial lumen. Our objective was to perform a preclinical assessment of folate receptor-targeted near-infrared imaging-guided bronchoscopy to detect peribronchial tumors.MethodsPafolacianine, a folate receptor-targeted molecular imaging agent, was used as a near-infrared fluorescent imaging agent. An ultra-thin composite optical fiberscope was used for laser irradiation and fluorescence imaging. Subcutaneous xenografts of KB cells in mice were used as folate receptor-positive tumors. Tumor-to-background ratio was calculated by the fluorescence intensity value of muscle tissues acquired by the ultra-thin composite optical fiberscope system and validated using a separate spectral imaging system. Ex vivo swine lungs into which pafolacianine-laden KB tumors were transplanted at various sites were used as a peribronchial tumor model.ResultsWith the in vivo murine model, tumor-to-background ratio observed by ultra-thin composite optical fiberscope peaked at 24 hours after pafolacianine injection (tumor-to-background ratio: 2.56 at 0.05 mg/kg, 2.03 at 0.025 mg/kg). The fluorescence intensity ratios between KB tumors and normal mouse lung parenchyma postmortem were 6.09 at 0.05 mg/kg and 5.08 at 0.025 mg/kg. In the peribronchial tumor model, the ultra-thin composite optical fiberscope system could successfully detect fluorescence from pafolacianine-laden folate receptor-positive tumors with 0.05 mg/kg at the carina and those with 0.025 mg/kg and 0.05 mg/kg in the peripheral airway.ConclusionsTransbronchial detection of pafolacianine-laden folate receptor-positive tumors by near-infrared imaging was feasible in ex vivo swine lungs. Further in vivo preclinical assessment is needed to confirm the feasibility of this technology.Copyright © 2022 The American Association for Thoracic Surgery. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.