• Am. J. Respir. Crit. Care Med. · Jun 2023

    Vascular-Parenchymal Crosstalk Promotes Lung Fibrosis Through BMPR2 Signaling.

    • Toyoshi Yanagihara, Kazuya Tsubouchi, Quan Zhou, Michael Chong, Kohei Otsubo, Takuma Isshiki, Jonas C Schupp, Seidai Sato, Ciaran Scallan, Chandak Upagupta, Spencer Revill, Anmar Ayoub, ChongSy GiinSGFirestone Institute for Respiratory Health, Research Institute at St. Joseph's Healthcare, and., Anna Dvorkin-Gheva, Naftali Kaminski, Jussi Tikkanen, Shaf Keshavjee, Guillaume Paré, Christophe Guignabert, Kjetil Ask, and KolbMartin R JMRJ0000-0003-3837-1467Firestone Institute for Respiratory Health, Research Institute at St. Joseph's Healthcare, and..
    • Firestone Institute for Respiratory Health, Research Institute at St. Joseph's Healthcare, and.
    • Am. J. Respir. Crit. Care Med. 2023 Jun 1; 207 (11): 149815141498-1514.

    AbstractRationale: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in a particularly poor prognosis. Objectives: To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis. Methods: We used an experimental model of lung fibrosis associated with PH by transient overexpression of active TGF-β1 (transforming growth factor-β1). Samples from patients with fibrotic lung diseases were analyzed in depth using immunostaining, gene expression, and gene mutations. Measurements and Main Results: We found a reduction in endothelial cells (ECs) and activation of vascular smooth muscle cells (VSMCs) in fibrotic lungs. Coculturing fibroblasts with VSMCs or ECs from fibrotic lungs induced fibrotic phenotypes in fibroblasts. IPF fibroblasts induced EC death and activation of VSMCs in coculture systems. Decreased concentrations of BMPR2 (bone morphogenic protein receptor 2) and its signaling were observed in ECs and VSMCs from fibrotic lungs in both rats and humans. On fibroblasts treated with media from VSMCs, BMPR2 suppression in VSMCs led to fibrogenic effects. Tacrolimus activated BMPR2 signaling and attenuated fibrosis and PH in rodent lungs. Whole-exome sequencing revealed rare mutations in PH-related genes, including BMPR2, in patients with IPF undergoing transplantation. A unique missense BMPR2 mutation (p.Q721R) was discovered to have dysfunctional effects on BMPR2 signaling. Conclusions: Endothelial dysfunction and vascular remodeling in PH secondary to pulmonary fibrosis enhance fibrogenesis through impaired BMPR2 signaling. Tacrolimus may have value as a treatment of advanced IPF and concomitant PH. Genetic abnormalities may determine the development of PH in advanced IPF.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.