• Eur Spine J · Nov 2023

    Multicenter Study

    Deep learning-based high-accuracy detection for lumbar and cervical degenerative disease on T2-weighted MR images.

    • Wei Yi, Jingwei Zhao, Wen Tang, Hongkun Yin, Lifeng Yu, Yaohui Wang, and Wei Tian.
    • Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing, 100035, China. dr_weiyi@163.com.
    • Eur Spine J. 2023 Nov 1; 32 (11): 380738143807-3814.

    PurposeTo develop and validate a deep learning (DL) model for detecting lumbar degenerative disease in both sagittal and axial views of T2-weighted MRI and evaluate its generalized performance in detecting cervical degenerative disease.MethodsT2-weighted MRI scans of 804 patients with symptoms of lumbar degenerative disease were retrospectively collected from three hospitals. The training dataset (n = 456) and internal validation dataset (n = 134) were randomly selected from the center I. Two external validation datasets comprising 100 and 114 patients were from center II and center III, respectively. A DL model based on 3D ResNet18 and transformer architecture was proposed to detect lumbar degenerative disease. In addition, a cervical MR image dataset comprising 200 patients from an independent hospital was used to evaluate the generalized performance of the DL model. The diagnostic performance was assessed by the free-response receiver operating characteristic (fROC) curve and precision-recall (PR) curve. Precision, recall, and F1-score were used to measure the DL model.ResultsA total of 2497 three-dimension retrogression annotations were labeled for training (n = 1157) and multicenter validation (n = 1340). The DL model showed excellent detection efficiency in the internal validation dataset, with F1-score achieving 0.971 and 0.903 on the sagittal and axial MR images, respectively. Good performance was also observed in the external validation dataset I (F1-score, 0.768 on sagittal MR images and 0.837 on axial MR images) and external validation dataset II (F1-score, 0.787 on sagittal MR images and 0.770 on axial MR images). Furthermore, the robustness of the DL model was demonstrated via transfer learning and generalized performance evaluation on the external cervical dataset, with the F1-score yielding 0.931 and 0.919 on the sagittal and axial MR images, respectively.ConclusionThe proposed DL model can automatically detect lumbar and cervical degenerative disease on T2-weighted MR images with good performance, robustness, and feasibility in clinical practice.© 2023. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…