• Annals of surgery · Jul 2023

    Artificial Intelligence-enabled Decision Support in Surgery: State-of-the-art and Future Directions.

    • Tyler J Loftus, Maria S Altieri, Jeremy A Balch, Kenneth L Abbott, Jeff Choi, Jayson S Marwaha, Daniel A Hashimoto, Gabriel A Brat, Yannis Raftopoulos, Heather L Evans, Gretchen P Jackson, Danielle S Walsh, and Christopher J Tignanelli.
    • Department of Surgery, University of Florida Health, Gainesville, FL.
    • Ann. Surg. 2023 Jul 1; 278 (1): 515851-58.

    ObjectiveTo summarize state-of-the-art artificial intelligence-enabled decision support in surgery and to quantify deficiencies in scientific rigor and reporting.BackgroundTo positively affect surgical care, decision-support models must exceed current reporting guideline requirements by performing external and real-time validation, enrolling adequate sample sizes, reporting model precision, assessing performance across vulnerable populations, and achieving clinical implementation; the degree to which published models meet these criteria is unknown.MethodsEmbase, PubMed, and MEDLINE databases were searched from their inception to September 21, 2022 for articles describing artificial intelligence-enabled decision support in surgery that uses preoperative or intraoperative data elements to predict complications within 90 days of surgery. Scientific rigor and reporting criteria were assessed and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines.ResultsSample size ranged from 163-2,882,526, with 8/36 articles (22.2%) featuring sample sizes of less than 2000; 7 of these 8 articles (87.5%) had below-average (<0.83) area under the receiver operating characteristic or accuracy. Overall, 29 articles (80.6%) performed internal validation only, 5 (13.8%) performed external validation, and 2 (5.6%) performed real-time validation. Twenty-three articles (63.9%) reported precision. No articles reported performance across sociodemographic categories. Thirteen articles (36.1%) presented a framework that could be used for clinical implementation; none assessed clinical implementation efficacy.ConclusionsArtificial intelligence-enabled decision support in surgery is limited by reliance on internal validation, small sample sizes that risk overfitting and sacrifice predictive performance, and failure to report confidence intervals, precision, equity analyses, and clinical implementation. Researchers should strive to improve scientific quality.Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.