• Plos One · Jan 2014

    ER-α36-mediated rapid estrogen signaling positively regulates ER-positive breast cancer stem/progenitor cells.

    • Hao Deng, Xin-Tian Zhang, Mo-Lin Wang, Hong-Yan Zheng, Li-Jiang Liu, and Zhao-Yi Wang.
    • Departments of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, Nebraska, United States of America ; Jiangda Pathology Center, Jianghan University, Wuhan, Hubei, P. R. China.
    • Plos One. 2014 Jan 1;9(2):e88034.

    AbstractThe breast cancer stem cells (BCSC) play important roles in breast cancer occurrence, recurrence and metastasis. However, the role of estrogen signaling, a signaling pathway important in development and progression of breast cancer, in regulation of BCSC has not been well established. Previously, we identified and cloned a variant of estrogen receptor α, ER-α36, with a molecular weight of 36 kDa. ER-α36 lacks both transactivation domains AF-1 and AF-2 of the 66 kDa full-length ER-α (ER-α66) and mediates rapid estrogen signaling to promote proliferation of breast cancer cells. In this study, we aim to investigate the function and the underlying mechanism of ER-α36-mediated rapid estrogen signaling in growth regulation of the ER-positive breast cancer stem/progenitor cells. ER-positive breast cancer cells MCF7 and T47D as well as the variants with different levels of ER-α36 expression were used. The effects of estrogen on BCSC's abilities of growth, self-renewal, differentiation and tumor-seeding were examined using tumorsphere formation, flow cytometry, indirect immunofluorence staining and in vivo xenograft assays. The underlying mechanisms were also studied with Western-blot analysis. We found that 17-β-estradiol (E2β) treatment increased the population of ER-positive breast cancer stem/progenitor cells while failed to do so in the cells with knocked-down levels of ER-α36 expression. Cells with forced expression of recombinant ER-α36, however, responded strongly to E2β treatment by increasing growth in vitro and tumor-seeding efficiency in vivo. The rapid estrogen signaling via the AKT/GSK3β pathway is involved in estrogen-stimulated growth of ER-positive breast cancer stem/progenitor cells. We concluded that ER-α36-mediated rapid estrogen signaling plays an important role in regulation and maintenance of ER-positive breast cancer stem/progenitor cells.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.