• Shock · May 2023

    Observational Study

    Global signatures of the microbiome and metabolome during hospitalization of septic patients.

    • Xiangyu Long, Sucheng Mu, Jin Zhang, Hao Xiang, Wei Wei, Jian Sun, Zhongshu Kuang, Yilin Yang, Yao Chen, Huixin Zhao, Yiming Dong, Jun Yin, Huajun Zheng, and Zhenju Song.
    • Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
    • Shock. 2023 May 1; 59 (5): 716724716-724.

    AbstractBackground: The gut plays an important role in the development of sepsis and acts as one of the possible drivers of multiple-organ dysfunction syndrome. This study aimed to explore the dynamic alterations in the gut microbiota and its metabolites in septic patients at different stages of intensive care unit (ICU) admission. Methods: In this prospective observational study, a total of 109 fecal samples from 23 septic patients, 16 nonseptic ICU patients and 10 healthy controls were analyzed. 16S rRNA gene sequencing and ultra-performance liquid chromatography coupled to tandem mass spectrometry targeted metabolomics were used for microbiota and metabolome analysis. A prediction model combining the Sequential Organ Failure Assessment score, Klebsiella , taurocholic acid, and butyric acid was used to predict the prognosis of sepsis. Results: The diversity and dominant species of the gut microbiota of septic patients were significantly disturbed. The proportions of normal gut microbiota, such as Firmicutes on the phylum level, as well as Faecalibacterium, Subdoligranulum , Ruminococcus , Agathobacter , and Blautia on the genus level, were decreased at different stages of ICU admission, while the proportions of potential pathogenic bacteria, such as Proteobacteria on the phylum level, and Enterococcus and Stenotrophomonas on the genus level were significantly increased. In addition, the amount of short-chain fatty acids and secondary bile acids decreased in septic patients, while that of the primary bile acids increased markedly. Bacterial richness and diversity were lower in the nonsurviving patients than those in the surviving patients in the later stage of ICU admission. In the nomogram model, the higher abundance of Klebsiella , concentration of taurocholic acid, and Sequential Organ Failure Assessment score, combined with a lower butyric acid concentration, could predict a higher probability of death from sepsis. Conclusions: Our study indicated that the dynamical alterations of gut microbiota and its metabolites were associated with the prognosis of the sepsis. Based on these alterations and clinical indicators, a nomogram model to predict the prognosis of septic patients was performed.Copyright © 2023 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…