-
Observational Study
Proximal Junction Failure in Spine Surgery: Integrating Geometrical and Biomechanical Global Descriptors Improves GAP Score-Based Assessment.
- Morteza Rasouligandomani, Alex Del Arco, Ferran Pellisé, Miguel A González Ballester, Fabio Galbusera, and Jérôme Noailly.
- Department of Information and Communication Technologies, University Pompeu Fabra, Barcelona, Spain.
- Spine. 2023 Aug 1; 48 (15): 107210811072-1081.
Study DesignRetrospective observational study.ObjectiveBiomechanical and geometrical descriptors are used to improve global alignment and proportion (GAP) prediction accuracy to detect proximal junctional failure (PJF).Summary Of Background DataPJF is probably the most important complication after sagittal imbalance surgery. The GAP score has been introduced as an effective predictor for PJF, but it fails in certain situations. In this study, 112 patient records were gathered (57 PJF; 55 controls) with biomechanical and geometrical descriptors measured to stratify control and failure cases.Patients And MethodsBiplanar EOS radiographs were used to build 3-dimensional full-spine models and determine spinopelvic sagittal parameters. The bending moment (BM) was calculated as the upper body mass times, the effective distance to the body center of mass at the adjacent upper instrumented vertebra +1. Other geometrical descriptors such as full balance index (FBI), spino-sacral angle (SSA), C7 plumb line/sacrofemoral distance ratio (C7/SFD ratio), T1-pelvic angle (TPA), and cervical inclination angle (CIA) were also evaluated. The respective abilities of the GAP, FBI, SSA, C7/SFD, TPA, CIA, body weight, body mass index, and BM to discriminate PJF cases were analyzed through receiver operating characteristic curves and corresponding areas under the curve (AUC).ResultsGAP (AUC = 0.8816) and FBI (AUC = 0.8933) were able to discriminate PJF cases but the highest discrimination power (AUC = 0.9371) was achieved with BM at upper instrumented vertebra + 1. Parameter cutoff analyses provided quantitative thresholds to characterize the control and failure groups and led to improved PJF discrimination, with GAP and BM being the most important contributors. SSA (AUC = 0.2857), C7/SFD (AUC = 0.3143), TPA (AUC = 0.5714), CIA (AUC = 0.4571), body weight (AUC = 0.6319), and body mass index (AUC = 0.7716) did not adequately predict PJF.ConclusionBM reflects the quantitative biomechanical effect of external loads and can improve GAP accuracy. Sagittal alignments and mechanical integrated scores could be used to better prognosticate the risk of PJF.Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.