• Br J Anaesth · May 2023

    Clinical Trial

    Breathe-squeeze: pharmacodynamics of a stimulus-free behavioural paradigm to track conscious states during sedation☆.

    • Christian S Guay, Darren Hight, Gaurang Gupta, MohammadMehdi Kafashan, Anhthi H Luong, Michael S Avidan, Emery N Brown, and PalancaBen Julian ABJADepartment of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Bio.
    • Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address: cguay2@mgh.harvard.edu.
    • Br J Anaesth. 2023 May 1; 130 (5): 557566557-566.

    BackgroundConscious states are typically inferred through responses to auditory tasks and noxious stimulation. We report the use of a stimulus-free behavioural paradigm to track state transitions in responsiveness during dexmedetomidine sedation. We hypothesised that estimated dexmedetomidine effect-site (Ce) concentrations would be higher at loss of responsiveness (LOR) compared with return of responsiveness (ROR), and both would be lower than comparable studies that used stimulus-based assessments.MethodsClosed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine data were analysed for secondary analysis. Fourteen healthy volunteers were asked to perform the breathe-squeeze task of gripping a dynamometer when inspiring and releasing it when expiring. LOR was defined as five inspirations without accompanied squeezes; ROR was defined as the return of five inspirations accompanied by squeezes. Brain states were monitored using 64-channel EEG. Dexmedetomidine was administered as a target-controlled infusion, with Ce estimated from a pharmacokinetic model.ResultsCounter to our hypothesis, mean estimated dexmedetomidine Ce was lower at LOR (0.92 ng ml-1; 95% confidence interval: 0.69-1.15) than at ROR (1.43 ng ml-1; 95% confidence interval: 1.27-1.58) (paired t-test; P=0.002). LOR was characterised by progressively increasing fronto-occipital EEG power in the 0.5-8 Hz band and loss of occipital alpha (8-12 Hz) and global beta (16-30 Hz) power. These EEG changes reverted at ROR.ConclusionsThe breathe-squeeze task can effectively track changes in responsiveness during sedation without external stimuli and might be more sensitive to state changes than stimulus-based tasks. It should be considered when perturbation of brain states is undesirable.Clinical Trial RegistrationNCT04206059.Copyright © 2023 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.