• Spine · Apr 2023

    Clinical Validation of a Novel Musculoskeletal Modeling Framework to Predict Postoperative Sagittal Alignment.

    • Riza Bayoglu, Jens-Peter Witt, Grégoire P Chatain, David O Okonkwo, Adam S Kanter, D Kojo Hamilton, Lauren M Puccio, Nima Alan, and Dominika Ignasiak.
    • NuVasive, Inc., Broomfield, CO.
    • Spine. 2023 Apr 15; 48 (8): E107E115E107-E115.

    Study DesignA retrospective radiographic and biomechanical analysis of 108 thoracolumbar fusion patients from two clinical centers.ObjectiveThis study aimed to determine the validity of a computational framework for predicting postoperative patient posture based on preoperative imaging and surgical data in a large clinical sample.Summary Of Background DataShort-term and long-term studies on thoracolumbar fusion patients have discussed that a preoperative predictive model would benefit surgical planning and improve patient outcomes. Clinical studies have shown that postoperative alignment changes at the pelvis and intact spine levels may negatively affect postural balance and quality of life. However, it remains challenging to predict such changes preoperatively because of confounding surgical and patient factors.Materials And MethodsPatient-specific musculoskeletal models incorporated weight, height, body mass index, age, pathology-associated muscle strength, preoperative sagittal alignment, and surgical treatment details. The sagittal alignment parameters predicted by the simulations were compared with those observed radiographically at a minimum of three months after surgery.ResultsPearson correlation coefficients ranged from r=0.86 to 0.95, and mean errors ranged from 4.1° to 5.6°. The predictive accuracies for postoperative spinopelvic malalignment (pelvic incidence minus lumbar lordosis>10°) and sagittal imbalance parameters (TPA>14°, T9PA>7.4°, or LPA>7.2°) were between 81% and 94%. Patients treated with long fusion (greater than five segments) had relatively lower prediction errors for lumbar lordosis and spinopelvic mismatch than those in the local and short groups.ConclusionsThe overall model performance with long constructs was superior to those of the local (one to two segments) and short (three to four segments) fusion cases. The clinical framework is a promising tool in development to enhance clinical judgment and to help design treatment strategies for predictable surgical outcomes.Level Of Evidence3.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.