• Cochrane Db Syst Rev · Mar 2023

    Review

    Bubble devices versus other pressure sources for nasal continuous positive airway pressure in preterm infants.

    • Raj Prakash, Antonio G De Paoli, Peter G Davis, Sam J Oddie, and William McGuire.
    • Paediatrics, York and Scarborough Teaching Hospitals NHS Trust, York, UK.
    • Cochrane Db Syst Rev. 2023 Mar 31; 3 (3): CD015130CD015130.

    BackgroundSeveral types of pressure sources, including underwater bubble devices, mechanical ventilators, and the Infant Flow Driver, are used for providing continuous positive airway pressure (CPAP) to preterm infants with respiratory distress. It is unclear whether the use of bubble CPAP versus other pressure sources is associated with lower rates of CPAP treatment failure, or mortality and other morbidity.  OBJECTIVES: To assess the benefits and harms of bubble CPAP versus other pressure sources (mechanical ventilators or Infant Flow Driver) for reducing treatment failure and associated morbidity and mortality in newborn preterm infants with or at risk of respiratory distress.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2023, Issue 1); MEDLINE (1946 to 6 January 2023), Embase (1974 to 6 January 2023), Maternity & Infant Care Database (1971 to 6 January 2023), and the Cumulative Index to Nursing and Allied Health Literature (1982 to 6 January 2023). We searched clinical trials databases and the reference lists of retrieved articles.Selection CriteriaWe included randomised controlled trials comparing bubble CPAP with other pressure sources (mechanical ventilators or Infant Flow Driver) for the delivery of nasal CPAP to preterm infants.Data Collection And AnalysisWe used standard Cochrane methods. Two review authors separately evaluated trial quality, extracted data, and synthesised effect estimates using risk ratio (RR), risk difference (RD), and mean difference. We used the GRADE approach to assess the certainty of the evidence for effects on treatment failure, all-cause mortality, neurodevelopmental impairment, pneumothorax, moderate-severe nasal trauma, and bronchopulmonary dysplasia.Main ResultsWe included 15 trials involving a total of 1437 infants. All trials were small (median number of participants 88). The methods used to generate the randomisation sequence and ensure allocation concealment were unclear in about half of the trial reports. Lack of measures to blind caregivers or investigators was a potential source of bias in all of the included trials. The trials took place during the past 25 years in care facilities internationally, predominantly in India (five trials) and Iran (four trials). The studied pressure sources were commercially available bubble CPAP devices versus a variety of mechanical ventilator (11 trials) or Infant Flow Driver (4 trials) devices.  Meta-analyses suggest that the use of bubble CPAP compared with mechanical ventilator or Infant Flow Driver CPAP may reduce the rate of treatment failure (RR 0.76, 95% confidence interval (CI) 0.60 to 0.95; (I² = 31%); RD -0.05, 95% CI -0.10 to -0.01; number needed to treat for an additional beneficial outcome 20, 95% CI 10 to 100; 13 trials, 1230 infants; low certainty evidence). The type of pressure source may not affect mortality prior to hospital discharge (RR 0.93, 95% CI 0.64 to 1.36 (I² = 0%); RD -0.01, 95% CI -0.04 to 0.02; 10 trials, 1189 infants; low certainty evidence). No data were available on neurodevelopmental impairment. Meta-analysis suggests that the pressure source may not affect the risk of pneumothorax (RR 0.73, 95% CI 0.40 to 1.34 (I² = 0%); RD -0.01, 95% CI -0.03 to 0.01; 14 trials, 1340 infants; low certainty evidence). Bubble CPAP likely increases the risk of moderate-severe nasal injury (RR 2.29, 95% CI 1.37 to 3.82 (I² = 17%); RD 0.07, 95% CI 0.03 to 0.11; number needed to treat for an additional harmful outcome 14, 95% CI 9 to 33; 8 trials, 753 infants; moderate certainty evidence). The pressure source may not affect the risk of bronchopulmonary dysplasia (RR 0.76, 95% CI 0.53 to 1.10 (I² = 0%); RD -0.04, 95% CI -0.09 to 0.01; 7 trials, 603 infants; low certainty evidence).  AUTHORS' CONCLUSIONS: Given the low level of certainty about the effects of bubble CPAP versus other pressure sources on the risk of treatment failure and most associated morbidity and mortality for preterm infants, further large, high-quality trials are needed to provide evidence of sufficient validity and applicability to inform context- and setting-relevant policy and practice.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.