• Medicine · Apr 2023

    Development and validation of machine learning-based models for prediction of adolescent idiopathic scoliosis: A retrospective study.

    • Zheng Lv, Wen Lv, Lei Wang, and Jiayuan Ou.
    • Department of Rehabilitation, Longgang District Central Hospital of Shenzhen, Shenzhen Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
    • Medicine (Baltimore). 2023 Apr 7; 102 (14): e33441e33441.

    AbstractAdolescent idiopathic scoliosis (AIS) can cause abnormal body posture, which has a negative impact on the overall posture. Therefore, timely prevention and early treatment are extremely important. The purpose of this study is to build an early warning model of AIS risk, so as to provide guidance for accurately identifying early high-risk AIS children and adolescents. We conducted a retrospective study of 1732 children and adolescents with or without AIS who underwent physical examination in Longgang District Central Hospital of Shenzhen (LDCHS queue) from January 2019 to October 2022 and 1581 children and adolescents with or without AIS in Shenzhen People Hospital (January 2018 to December 2022) as external validation queues (SPH queue). The random forest model (RFM), support vector machine model, artificial neural network model (ANNM), decision tree model (DTM), and generalized linear model (GLM) were used to build AIS model for children and adolescents. The predictive efficacy of 5 machine learning models was evaluated by receiver operating characteristic curve and decision curve analysis. For screening candidate predictors of AIS, the ratio of sitting height to standing height (ROSHTSH), angle of lumbar rotation, scapular tilt (ST), shoulder-height difference (SHD), lumbar concave (LC), pelvic tilt (PT) and angle of thoracolumbar rotation (AOTR) can be used as a potential predictor of AIS. The effectiveness of the prediction model constructed by the 5 machine learning algorithms was between (area under the curve [AUC]: 0.767, 95% confidence interval [CI]: 0.710-0.824) and (AUC: 0.899, 95% CI: 0.842-0.956) in the training set and internal verification set, respectively. Among them, the ANNM was equipped with the best prediction effectiveness (training set: AUC: 0.899, 95% CI: 0.842-0.956) and (internal verification set: AUC: 0.897, 95% CI: 0.842-0.952). The prediction model of AIS based on machine learning algorithm can achieve satisfactory prediction efficiency, among which ANNM is the best, which can be used to guide clinicians in diagnosis and treatment and improve the prognosis of AIS children and adolescents.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.