• Shock · Jun 2023

    Effects of bacterial lipopolysaccharide and Shiga Toxin on induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells.

    • Daiana Martire-Greco, Alejandro La Greca, Luis Castillo Montañez, Celeste Biani, Antonella Lombardi, Federico Birnberg-Weiss, Alessandra Norris, Flavia Sacerdoti, María Marta Amaral, Nahuel Rodrigues-Rodriguez, Jose Ramón Pittaluga, Verónica Alejandra Furmento, Verónica Inés Landoni, Santiago Gabriel Miriuka, Carlos Luzzani, and Gabriela Cristina Fernández.
    • Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina.
    • Shock. 2023 Jun 1; 59 (6): 941947941-947.

    AbstractBackground : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. Considering the repairing properties of MSC, we aimed to study the response of MSC derived from induced pluripotent stem cells (iPSC-MSC) to LPS and/or Stx and its effect on the restoration of injured endothelial cells. Methods : iPSC-MSC were treated with LPS and or/Stx for 24 h and secretion of cytokines, adhesion, and migration were measured in response to these toxins. In addition, conditioned media from treated iPSC-MSC were collected and used for proteomics analysis and evaluation of endothelial cell healing and tubulogenesis using human microvascular endothelial cells 1 as a source of endothelial cells. Results : The results obtained showed that LPS induced a proinflammatory profile on iPSC-MSC, whereas Stx effects were less evident, even though cells expressed the Gb 3 receptor. Moreover, LPS induced on iPSC-MSC an increment in migration and adhesion to a gelatin substrate. Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.Copyright © 2023 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.