-
- Chi Peng, Fan Yang, Lulu Li, Liwei Peng, Jian Yu, Peng Wang, and Zhichao Jin.
- Department of Health Statistics, Second Military Medical University, Shanghai, China.
- Neurocrit Care. 2023 Apr 1; 38 (2): 335344335-344.
BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783-0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.© 2022. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.