• Journal of neurosurgery · Nov 2023

    Data-efficient resting-state functional magnetic resonance imaging brain mapping with deep learning.

    • Patrick H Luckett, Ki Yun Park, John J Lee, Eric J Lenze, Julie Loebach Wetherell, Lisa T Eyler, Abraham Z Snyder, Beau M Ances, Joshua S Shimony, and Eric C Leuthardt.
    • 1Department of Neurological Surgery, Division of Neurotechnology, Washington University School of Medicine.
    • J. Neurosurg. 2023 Nov 1; 139 (5): 125812691258-1269.

    ObjectiveResting-state functional MRI (RS-fMRI) enables the mapping of function within the brain and is emerging as an efficient tool for the presurgical evaluation of eloquent cortex. Models capable of reliable and precise mapping of resting-state networks (RSNs) with a reduced scanning time would lead to improved patient comfort while reducing the cost per scan. The aims of the present study were to develop a deep 3D convolutional neural network (3DCNN) capable of voxel-wise mapping of language (LAN) and motor (MOT) RSNs with minimal quantities of RS-fMRI data.MethodsImaging data were gathered from multiple ongoing studies at Washington University School of Medicine and other thoroughly characterized, publicly available data sets. All study participants (n = 2252 healthy adults) were cognitively screened and completed structural neuroimaging and RS-fMRI. Random permutations of RS-fMRI regions of interest were used to train a 3DCNN. After training, model inferences were compared using varying amounts of RS-fMRI data from the control data set as well as 5 patients with glioblastoma multiforme.ResultsThe trained model achieved 96% out-of-sample validation accuracy on data encompassing a large age range collected on multiple scanner types and varying sequence parameters. Testing on out-of-sample control data showed 97.9% similarity between results generated using either 50 or 200 RS-fMRI time points, corresponding to approximately 2.5 and 10 minutes, respectively (96.9% LAN, 96.3% MOT true-positive rate). In evaluating data from patients with brain tumors, the 3DCNN was able to accurately map LAN and MOT networks despite structural and functional alterations.ConclusionsFunctional maps produced by the 3DCNN can inform surgical planning in patients with brain tumors in a time-efficient manner. The authors present a highly efficient method for presurgical functional mapping and thus improved functional preservation in patients with brain tumors.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.