• Pain · Sep 2023

    TRPM3 as a novel target to alleviate acute oxaliplatin-induced peripheral neuropathic pain.

    • Vincenzo Davide Aloi, Sílvia João Poseiro Coutinho Pinto, Rita Van Bree, Katrien Luyten, Thomas Voets, and Joris Vriens.
    • Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
    • Pain. 2023 Sep 1; 164 (9): 206020692060-2069.

    AbstractChemotherapy-induced peripheral neuropathic pain (CIPNP) is an adverse effect observed in up to 80% of patients of cancer on treatment with cytostatic drugs including paclitaxel and oxaliplatin. Chemotherapy-induced peripheral neuropathic pain can be so severe that it limits dose and choice of chemotherapy and has significant negative consequences on the quality of life of survivors. Current treatment options for CIPNP are limited and unsatisfactory. TRPM3 is a calcium-permeable ion channel functionally expressed in peripheral sensory neurons involved in the detection of thermal stimuli. Here, we focus on the possible involvement of TRPM3 in acute oxaliplatin-induced mechanical allodynia and cold hypersensitivity. In vitro calcium microfluorimetry and whole-cell patch-clamp experiments showed that TRPM3 is functionally upregulated in both heterologous and homologous expression systems after acute (24 hours) oxaliplatin treatment, whereas the direct application of oxaliplatin was without effect. In vivo behavioral studies using an acute oxaliplatin model for CIPNP showed the development of cold and mechano hypersensitivity in control mice, which was lacking in TRPM3 deficient mice. In addition, the levels of protein ERK, a marker for neuronal activity, were significantly reduced in dorsal root ganglion neurons derived from TRPM3 deficient mice compared with control after oxaliplatin administration. Moreover, intraperitoneal injection of a TRPM3 antagonist, isosakuranetin, effectively reduced the oxaliplatin-induced pain behavior in response to cold and mechanical stimulation in mice with an acute form of oxaliplatin-induced peripheral neuropathy. In summary, TRPM3 represents a potential new target for the treatment of neuropathic pain in patients undergoing chemotherapy.Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.